22 research outputs found

    Design Strategies of Biodegradable Scaffolds for Tissue Regeneration

    No full text
    There are numerous available biodegradable materials that can be used as scaffolds in regenerative medicine. Currently, there is a huge emphasis on the designing phase of the scaffolds. Materials can be designed to have different properties in order to match the specific application. Modifying scaffolds enhances their bioactivity and improves the regeneration capacity. Modifications of the scaffolds can be later characterized using several tissue engineering tools. In addition to the material, cell source is an important component of the regeneration process. Modified materials must be able to support survival and growth of different cell types. Together, cells and modified biomaterials contribute to the remodeling of the engineered tissue, which affects its performance. This review focuses on the recent advancements in the designs of the scaffolds including the physical and chemical modifications. The last part of this review also discusses designing processes that involve viability of cells

    Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications

    No full text
    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young’s modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds

    Effets aigus d’un travail de squat à charges lourdes sur la performance consécutive en détente verticale

    No full text
    Introduction : L’objectif de cette étude était d’explorer les effets d’un travail de demi-squat concentrique et isométrique à charges élevées sur la performance consécutive en détente verticale (saut avec contre mouvement [CMJ]). Synthèse des faits : Dix-sept jeunes hommes (20–35 ans) actifs ont participé à cette étude. La force maximale en demi-squat a été mesurée par un appareil de musculation classique (Smith machine) et la détente verticale de base a été évaluée par un accéléromètre (Myotest Pro). Soixante-douze heures après, la détente verticale a été mesurée immédiatement après (CMJconc0), deux minutes après (CMJconc2), et quatre minutes après (CMJconc4) trois répétitions en demi-squat à 85 % de la force maximale. Soixante-douze heures après, la détente verticale a été mesurée immédiatement après (CMJiso0), deux minutes après (CMJiso2), et quatre minutes après (CMJiso4) cinq secondes de contraction isométrique à 100 % de la force maximale en demi-squat. Les valeurs de CMJ obtenues immédiatement après et quatre minutes après le travail de squat (dans les deux formes étudiées : concentriques et isométriques) étaient significativement inférieures par rapport à la détente verticale (CMJ) de base. Conclusion : Cette étude montre des effets négatifs du travail de demi-squat à charges lourdes sur la performance consécutive en détente verticale
    corecore