4 research outputs found

    Challenging Common Assumptions in Multi-task Learning

    Full text link
    While multi-task learning (MTL) has gained significant attention in recent years, its underlying mechanisms remain poorly understood. Recent methods did not yield consistent performance improvements over single task learning (STL) baselines, underscoring the importance of gaining more profound insights about challenges specific to MTL. In our study, we challenge common assumptions in MTL in the context of STL: First, the choice of optimizer has only been mildly investigated in MTL. We show the pivotal role of common STL tools such as the Adam optimizer in MTL. We deduce the effectiveness of Adam to its partial loss-scale invariance. Second, the notion of gradient conflicts has often been phrased as a specific problem in MTL. We delve into the role of gradient conflicts in MTL and compare it to STL. For angular gradient alignment we find no evidence that this is a unique problem in MTL. We emphasize differences in gradient magnitude as the main distinguishing factor. Lastly, we compare the transferability of features learned through MTL and STL on common image corruptions, and find no conclusive evidence that MTL leads to superior transferability. Overall, we find surprising similarities between STL and MTL suggesting to consider methods from both fields in a broader context.Comment:

    Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using Deep Shape Priors

    Get PDF
    Representing scenes at the granularity of objects is a prerequisite for scene understanding and decision making. We propose PriSMONet, a novel approach based on Prior Shape knowledge for learning Multi-Object 3D scene decomposition and representations from single images. Our approach learns to decompose images of synthetic scenes with multiple objects on a planar surface into its constituent scene objects and to infer their 3D properties from a single view. A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image. By differentiable rendering, we train our model to decompose scenes from RGB-D images in a self-supervised way. The 3D shapes are represented continuously in function-space as signed distance functions which we pre-train from example shapes in a supervised way. These shape priors provide weak supervision signals to better condition the challenging overall learning task. We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation
    corecore