2,457 research outputs found

    Electromagnetic precursors to black hole - neutron star gravitational wave events: Flares and reconnection-powered fast-radio transients from the late inspiral

    Full text link
    The presence of magnetic fields in the late inspiral of black hole -- neutron star binaries could lead to potentially detectable electromagnetic precursor transients. Using general-relativistic force-free electrodynamics simulations, we investigate pre-merger interactions of the common magnetosphere of black hole -- neutron star systems. We demonstrate that these systems can feature copious electromagnetic flaring activity, which we find depends on the magnetic field orientation but not on black hole spin. Due to interactions with the surrounding magnetosphere, these flares could lead to Fast Radio Burst-like transients and X-ray emission, with LEM≲1041(B∗/1012 G)2 erg/s\mathcal{L}_{\rm EM} \lesssim 10^{41} \left( B_\ast/ 10^{12}\, \rm G \right)^2\, \rm erg/ s as an upper bound for the luminosity, where B∗B_\ast is the magnetic field strength on the surface of the neutron star.Comment: 13 pages, 6 figures; accepted version, to appear in ApJ

    Electromagnetic precursor flares from the late inspiral of neutron star binaries

    Full text link
    The coalescence of two neutron stars is accompanied by the emission of gravitational waves, and can also feature electromagnetic counterparts powered by mass ejecta and the formation of a relativistic jet after the merger. Since neutron stars can feature strong magnetic fields, the non-trivial interaction of the neutron star magnetospheres might fuel potentially powerful electromagnetic transients prior to merger. A key process powering those precursor transients is relativistic reconnection in strong current sheets formed between the two stars. In this work, we provide a detailed analysis of how the twisting of the common magnetosphere of the binary leads to an emission of electromagnetic flares, akin to those produced in the solar corona. By means of relativistic force-free electrodynamics simulations, we clarify the role of different magnetic field topologies in the process. We conclude that flaring will always occur for suitable magnetic field alignments, unless one of the neutron stars has a magnetic field significantly weaker than the other.Comment: 19 pages, 10 figure

    Reconnection-powered fast radio transients from coalescing neutron star binaries

    Full text link
    It is an open question whether and how gravitational wave events involving neutron stars can be preceded by electromagnetic counterparts. This work shows that the collision of two neutron stars with magnetic fields well below magnetar-level strengths can produce millisecond Fast-Radio-Burst-like transients. Using global force-free electrodynamics simulations, we demonstrate that electromagnetic flares, produced by overtwisted common flux tubes in the binary magnetosphere, collide with the orbital current sheet and compress it, resulting in enhanced magnetic reconnection. As a result, the current sheet fragments into a sequence of plasmoids, which collide with each other leading to the emission of coherent electromagnetic waves. The resulting millisecond-long burst of radiation should have frequencies in the range of 10−20 GHz10-20\,\rm GHz for magnetic fields of B∗=1011 GB^{\ast}=10^{11}\, \rm G at the stellar surfaces.Comment: 10 pages, 4 figures, version accepted by PR

    Semi-Resistive Approach for Tightly Coupled Dipole Array Bandwidth Enhancement

    Get PDF
    A new approach to enhance the bandwidth of Tightly Coupled Dipole Arrays (TCDA) is presented. The new design achieves the integration of a semi-resistive Frequency Selective Surface network (FSS) composed of a non-resistive low-pass FSS and two resistive band-stop FSSs. The integration of this FSS network within a dual-polarized Tightly Coupled Dipole Array (TCDA) led to an increased impedance bandwidth of 28:1 from 0.20GHz to 5.6GHz. Notably, the use of an FSS superstrate allowed for scanning down to 60° at VSWR \u3c 3 in the E-plane and VSWR \u3c 4 in the D- and H-planes. Additionally, the strategic use of the inserted low-pass FSS reduces the resistive effects above 2.5GHz for improved average efficiency. A array prototype was fabricated and tested to verify the bandwidth and gain of a finite array. The simulated radiation efficiency was demonstrated to be 83%, on average, across the band

    Techniques for Achieving High Isolation in RF Domain for Simultaneous Transmit and Receive

    Get PDF
    With the growth of wireless data traffic, additional spectrum is required to meet consumer demands. Consequently, innovative approaches are needed for efficient management of the available limited spectrum. To double the achievable spectral efficiency, a transceiver can be designed to receive and transmit signals simultaneously (STAR) across the same frequency band. However, due to the coupling of the high power transmitted signal into the collocated receiver, the receiver\u27s performance is degraded. For successful STAR realization, the coupled high-power transmit (Tx) signal should be suppressed by 100-120 dB over the entire operational bandwidth. So far, most STAR implementations are narrowband, and not useful for ultra wideband (UWB) communications. In this paper, we present a review of novel approaches employed to achieve improved cancellation across wide bandwidths in RF and propagation domains. Both single and multi-antenna systems are considered. Measurements show an average cancellation of 50 dB using two stages of RF signal cancellation

    Magnetar bursts due to Alfv\'{e}n wave nonlinear breakout

    Full text link
    The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 103610^{36} to 1043 erg s−110^{43}\ {\rm erg}\,{\rm s}^{-1}. Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfv\'{e}n waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1\lesssim 1 sr if the quake launching region is small, ≲0.01\lesssim 0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154.Comment: 14 pages, 11 figures, accepted for publication in Ap

    Geometrical frustration and incommensurate magnetic order in Na3RuO4 with two triangular motifs

    Get PDF
    Incommensurate magnetic order in the spin-3/2 antiferromagnet Na3RuO4 is uncovered by neutron diffraction combined with ab initio calculations. The crystal structure of Na3RuO4 contains two triangular motifs on different length scales. The magnetic Ru5+ ions form a lozenge (diamond) configuration, with tetramers composed of two isosceles triangles. These tetramers are further arranged in layers, such that an effective triangular lattice is formed. The tetramers are nearly antiferromagnetic but frustration between them leads to an incommensurately modulated magnetic structure described by the propagation vector →k=(0.242(1),0,0.313(1)). We show that the long-range Ru-O-O-Ru couplings between the tetramers play a major role in Na3RuO4 and suggest an effective description in terms of the spatially anisotropic triangular lattice if the tetramers are treated as single sites

    Decrease in Shiga toxin expression using a minimal inhibitory concentration of rifampicin followed by bactericidal gentamicin treatment enhances survival of Escherichia coli O157:H7-infected BALB/c mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of <it>Escherichia coli </it>O157:H7 infections with antimicrobial agents is controversial due to an association with potentially fatal sequelae. The production of Shiga toxins is believed to be central to the pathogenesis of this organism. Therefore, decreasing the expression of these toxins prior to bacterial eradication may provide a safer course of therapy.</p> <p>Methods</p> <p>The utility of decreasing Shiga toxin gene expression in <it>E. coli </it>O157:H7 with rifampicin prior to bacterial eradication with gentamicin was evaluated <it>in vitro </it>using real-time reverse-transcription polymerase chain reaction. Toxin release from treated bacterial cells was assayed for with reverse passive latex agglutination. The effect of this treatment on the survival of <it>E. coli </it>O157:H7-infected BALB/c mice was also monitored.</p> <p>Results</p> <p>Transcription of Shiga toxin-encoding genes was considerably decreased as an effect of treating <it>E. coli </it>O157:H7 <it>in vitro </it>with the minimum inhibitory concentration (MIC) of rifampicin followed by the minimum bactericidal concentration (MBC) of gentamicin (> 99% decrease) compared to treatment with gentamicin alone (50-75% decrease). The release of Shiga toxins from <it>E. coli </it>O157:H7 incubated with the MIC of rifampicin followed by addition of the MBC of gentamicin was decreased as well. On the other hand, the highest survival rate in BALB/c mice infected with <it>E. coli </it>O157:H7 was observed in those treated with the <it>in vivo </it>MIC equivalent dose of rifampicin followed by the <it>in vivo </it>MBC equivalent dose of gentamicin compared to mice treated with gentamicin or rifampicin alone.</p> <p>Conclusions</p> <p>The use of non-lethal expression-inhibitory doses of antimicrobial agents prior to bactericidal ones in treating <it>E. coli </it>O157:H7 infection is effective and may be potentially useful in human infections with this agent in addition to other Shiga toxin producing <it>E. coli </it>strains.</p

    Recurrent burner syndrome due to presumed cervical spine osteoblastoma in a collision sport athlete - a case report.

    Get PDF
    We present a case of a 35-year-old active rugby player presenting with a history of recurrent burner syndrome thought secondary to an osteoblastoma involving the posterior arch of the atlas. Radiographically, the lesion had features typical for a large osteoid osteoma or osteoblastoma, including osseous expansion, peripheral sclerosis and bony hypertrophy, internal lucency, and even suggestion of a central nidus. The patient subsequently underwent an en bloc resection of the posterior atlas via a standard posterior approach. The surgery revealed very good clinical results. In this report, we will discuss in detail, the presentation, treatment, and return to play recommendations involving this patient

    Maternal nutrient restriction in Guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia

    Get PDF
    BackgroundWe determined whether maternal nutrient restriction (MNR) in Guinea pigs leading to fetal growth restriction (FGR) impacts markers for tissue hypoxia, implicating a mechanistic role for chronic hypoxia.MethodsGuinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1), a marker of tissue hypoxia, was injected into pregnant sows. Fetuses were then necropsied and liver, kidney, and placental tissues were processed for erythropoietin (EPO), EPO-receptor (EPOR), and vascular endothelial growth factor (VEGF) protein levels, and for HP-1 immunoreactivity (IR).ResultsFGR-MNR fetuses were 36% smaller with asymmetrical growth restriction compared to controls. EPO and VEGF protein levels were increased in the female FGR-MNR fetuses, providing support for hypoxic stimulus and linkage to increased erythropoiesis, but not in the male FGR-MNR fetuses, possibly reflecting a weaker link between oxygenation and erythropoiesis. HP-1 IR was increased in the liver and kidneys of both male and female FGR-MNR fetuses as an index of local tissue hypoxia, but with no changes in the placenta.ConclusionChronic hypoxia is likely to be an important signaling mechanism for the decreased fetal growth seen with maternal undernutrition and appears to be post-placental in nature
    • …
    corecore