7 research outputs found

    Clinical Trial and In Vitro

    Full text link

    Clinical Trial and In Vitro Study for the Role of Cartilage and Synovia in Acute Articular Infection

    No full text
    Objective. Osteoarthritis is a long-term complication of acute articular infections. However, the roles of cartilage and synovia in this process are not yet fully understood. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions compared in patients with arthroplasty (n = 8) or with intact joints (n = 67). Cytokines and cell function were also analyzed using a human in vitro model of joint infection. Results. Synovial IL-1β levels were significantly higher in patients with arthroplasty (p = 0.004). Higher IL-1β concentrations were also found in the in vitro model without chondrocytes (p < 0.05). The anti-inflammatory cytokines IL-4 and IL-10 were consistently expressed in vivo and in vitro, showing no association with the presence of cartilage or chondrocytes. In contrast, FasL levels increased steadily in vitro, reaching higher levels without chondrocytes (p < 0.05). Likewise, the viability of synovial fibroblasts (SFB) during infection was higher in the presence of chondrocytes. The cartilage-metabolism markers aggrecan and bFGF were at higher concentrations in intact joints, but also synthesized by SFB. Conclusions. Our data suggest an anti-inflammatory effect of cartilage associated with the SFBs’ increased resistance to infections, which displayed the ability to effectively synthesize cartilage metabolites.The trial is registered with DRKS 00003536, MISSinG

    Biochemical Characterization of Early Osteoarthritis in the Ankle

    No full text
    Purpose. Reliable data about in vivo regulation of cytokines in early ankle osteoarthritis (OA) are still missing. Methods. 49 patients with a mean age of 33±14 years undergoing an arthroscopy of the ankle with different stages of chronic OA were prospectively included in a clinical trial. Lavage fluids were analyzed by ELISA. Additionally, clinical parameters and scores (FFI, CFSS, and AOFAS) were evaluated and supplemented by the Kellgren Lawrence Score (KLS) and the ankle osteoarthritis scoring system (AOSS). Results. ICRS grading of cartilage damage, previous operations, and duration of complains were strong indicators for OA progress and showed correlations to age, clinical scores, validated KLS, and AOSS (P<0.04). Systemic and intraarticular inflammatory parameters were low in all patients. Biochemically, aggrecan and BMP-7 positively indicated OA with statistically significant associations with duration of symptoms, FFI, AOFAS, and KLS (P<0.04). In contrast, BMP-2 levels showed statistically significant negative correlations to aggrecan or BMP-7 concentrations, which is in line with the negative association with ICRS score and KLS and the positive correlation with FFI (P<0.03). Conclusions. We were able to identify different key markers of OA in the ankle as aggrecan, BMP-7, and BMP-2, offering starting points for new ways in diagnostics and interventional strategies

    Development and Retranslational Validation of an In Vitro Model to Characterize Acute Infections in Large Human Joints

    No full text
    Bacterial infections can destroy cartilage integrity, resulting in osteoarthritis. Goal was to develop an in vitro model with in vivo validation of acute joint inflammation. Inflammation in cocultivated human synovial fibroblasts (SFB), chondrocytes (CHDR), and mononuclear cells (MNC) was successively relieved for 10 days. Articular effusions from patients with (n=7) and without (n=5) postoperative joint infection in healthy patients (ASA 1-2) were used as model validation. Inflammation in vitro resulted in an enormous increase in IL-1 and a successive reduction in SFB numbers. CHDR however, maintained metabolic activity and proteoglycan synthesis. While concentrations of bFGF in vivo and in vitro rose consistently, the mRNA increase was only moderate. Concurring with our in vivo data, cartilage-specific IGF-1 steadily increased, while IGF-1 mRNA in the CHDR and SFB did not correlate with protein levels. Similarly, aggrecan (ACAN) protein concentrations increased in vivo and failed to correlate in vitro with gene expression in either the CHDR or the SFB, indicating extracellular matrix breakdown. Anabolic cartilage-specific BMP-7 with highly significant intra-articular levels was significantly elevated in vitro on day 10 following maximum inflammation. Our in vitro model enables us to validate early inflammation of in vivo cell- and cytokine-specific regulatory patterns. This trial is registered with MISSinG, DRKS 00003536

    Early Intra-Articular Complement Activation in Ankle Fractures

    No full text
    Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P<0.001). Furthermore, synovial expressions of both proteins correlated with each other (P<0.001). Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P<0.01) and serological C-reactive protein concentrations 2 days after surgery (P<0.05). Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P<0.02). Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P<0.01). Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures
    corecore