98 research outputs found

    Determining the main-sequence mass of Type II supernova progenitors

    Full text link
    We present radiation-hydrodynamics simulations of core-collapse supernova (SN) explosions, artificially generated by driving a piston at the base of the envelope of a rotating or non-rotating red-supergiant progenitor star. We search for trends in ejecta kinematics in the resulting Type II-Plateau (II-P) SN, exploring dependencies with explosion energy and pre-SN stellar-evolution model. We recover the trivial result that larger explosion energies yield larger ejecta velocities in a given progenitor. However, we emphasise that for a given explosion energy, the increasing helium-core mass with main-sequence mass of such Type II-P SN progenitors leads to ejection of core-embedded oxygen-rich material at larger velocities. We find that the photospheric velocity at 15d after shock breakout is a good and simple indicator of the explosion energy in our selected set of pre-SN models. This measurement, combined with the width of the nebular-phase OI6303-6363A line, can be used to place an upper-limit on the progenitor main-sequence mass. Using the results from our simulations, we find that the current, but remarkably scant, late-time spectra of Type II-P SNe support progenitor main-sequence masses inferior to ~20Msun and thus, corroborate the inferences based on the direct, but difficult, progenitor identification in pre-explosion images. The narrow width of OI6303-6363A in Type II-P SNe with nebular spectra does not support high-mass progenitors in the range 25-30Msun. Combined with quantitative spectroscopic modelling, such diagnostics offer a means to constrain the main-sequence mass of the progenitor, the mass fraction of the core ejected, and thus, the mass of the compact remnant formed.Comment: accepted to MNRA

    Shock-heating of stellar envelopes: A possible common mechanism at the origin of explosions and eruptions in massive stars

    Full text link
    Observations of transient phenomena in the Universe reveal a spectrum of mass-ejection properties associated with massive stars, covering from Type II/Ib/Ic core-collapse supernovae (SNe) to giant eruptions of Luminous Blue Variables (LBV) and optical transients. Here, we hypothesize that a fraction of these phenomena may have an explosive origin, the distinguishing ingredient being the ratio of the prompt energy release E_dep to the envelope binding energy E_binding. Using one-dimensional one-group radiation hydrodynamics and a set of 10-25Msun, massive-star models, we explore the dynamical response of a stellar envelope subject to a strong, sudden, and deeply-rooted energy release. Following energy deposition, a shock systematically forms, crosses the progenitor envelope on a day timescale, and breaks-out with a signal of hour-to-days duration and a 10^5-10^11 Lsun luminosity. For E_dep > E_binding, full envelope ejection results with a SN-like bolometric luminosity and kinetic energy, modulations being commensurate to the energy deposited and echoing the diversity of Type II-Plateau SNe. For E_dep ~ E_binding, partial envelope ejection results with a small expansion speed, and a more modest but year-long luminosity plateau, reminiscent of LBV eruptions or so-called SN impostors. For E_dep < E_binding, we obtain a "puffed-up" star, secularly relaxing back to thermal equilibrium. In parallel with gravitational collapse and Type II SNe, we argue that the thermonuclear combustion of merely a few 0.01Msun of C/O could power a wide range of explosions/eruptions in loosely-bound massive stars, as those in the 8-12Msun range, or in more massive ones owing to their proximity to the Eddington limit and/or critical rotation.Comment: 20 pages, 16 figures, 2 tables; accepted to MNRA

    Core-collapse explosions of Wolf-Rayet stars and the connection to type IIb/Ib/Ic supernovae

    Full text link
    We present non-LTE time-dependent radiative-transfer simulations of supernova (SN) IIb/Ib/Ic spectra and light curves, based on ~1B-energy piston-driven ejecta, with and without 56Ni, produced from single and binary Wolf-Rayet (W-R) stars evolved at solar and sub-solar metallicities. Our bolometric light curves show a 10-day long post-breakout plateau with a luminosity of 1-5x10^7Lsun. In our 56Ni-rich models, with ~3Msun ejecta masses, this plateau precedes a 20-30-day long re-brightening phase initiated by the outward-diffusing heat wave powered by radioactive decay at depth. In low ejecta-mass models with moderate mixing, Gamma-ray leakage starts as early as ~50d after explosion and causes the nebular luminosity to steeply decline by ~0.02mag/d. Such signatures, which are observed in standard SNe IIb/Ib/Ic, are consistent with low-mass progenitors derived from a binary-star population. We propose that the majority of stars with an initial mass ~<20Msun yield SNe II-P if 'effectively" single, SNe IIb/Ib/Ic if part of a close binary system, and SN-less black holes if more massive. Our ejecta, with outer hydrogen mass fractions as low as ~>0.01 and a total hydrogen mass of ~>0.001Msun, yield the characteristic SN IIb spectral morphology at early times. However, by ~15d after the explosion, only Halpha may remain as a weak absorption feature. Our binary models, characterised by helium surface mass fractions of ~>0.85, systematically show HeI lines during the post-breakout plateau, irrespective of the 56Ni abundance. Synthetic spectra show a strong sensitivity to metallicity, which offers the possibility to constrain it directly from SN spectroscopic modelling.Comment: 23 pages, 2 tables, 13 figures, accepted to MNRA

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z∌0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z∌0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society
    • 

    corecore