3 research outputs found

    The incidence of bacterial endosymbionts in terrestrial arthropods.

    Get PDF
    Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48-57) of arthropod species are infected with Wolbachia, 24% (CIs: 20-42) with Rickettsia and 13% (CIs: 13-55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification.This is the author accepted manuscript. The final version is available via Royal Society Publishing at http://rspb.royalsocietypublishing.org/content/282/1807/20150249#ack-1

    Wolbachia in butterflies and moths: geographic structure in infection frequency.

    Get PDF
    INTRODUCTION: Butterflies and moths (Lepidoptera) constitute one of the most diverse insect orders, and play an important role in ecosystem function. However, little is known in terms of their bacterial communities. Wolbachia, perhaps the most common and widespread intracellular bacterium on Earth, can manipulate the physiology and reproduction of its hosts, and is transmitted vertically from mother to offspring, or sometimes horizontally between species. While its role in some hosts has been studied extensively, its incidence across Lepidoptera is poorly understood. A recent analysis using a beta-binomial model to infer the between-species distribution of prevalence estimated that approximately 40 % of arthropod species are infected with Wolbachia, but particular taxonomic groups and ecological niches seem to display substantially higher or lower incidences. In this study, we took an initial step and applied a similar, maximum likelihood approach to 300 species of Lepidoptera (7604 individuals from 660 populations) belonging to 17 families and 10 superfamilies, and sampled from 36 countries, representing all continents excluding Antarctica. RESULTS: Approximately a quarter to a third of individuals appear to be infected with Wolbachia, and around 80 % of Lepidoptera species are infected at a non-negligible frequency. This incidence estimate is very high compared to arthropods in general. Wolbachia infection in Lepidoptera is shown to vary between families, but there is no evidence for closely related groups to show similar infection levels. True butterflies (Papilionoidea) are overrepresented in our data, however, our estimates show this group can be taken as a representative for the other major lepidopteran superfamilies. We also show substantial variation in infection level according to geography - closer locations tend to show similar infection levels. We further show that variation in geography is due to a latitudinal gradient in Wolbachia infection, with lower frequencies towards higher latitudes. CONCLUSIONS: Our comprehensive survey of Wolbachia infection in Lepidoptera suggests that infection incidence is very high, and provides evidence that climate and geography are strong predictors of infection frequency.We thank the McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History for their continued support. This study was supported by the University of Florida Research Opportunity Seed Fund (ROSF) and the National Science Foundation grant number DEB-1354585 to AYK.This is the final published version. It first appeared at http://link.springer.com/article/10.1186%2Fs12983-015-0107-z
    corecore