768 research outputs found
Aortic Ring Assay
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite
Recommended from our members
Algorithms, Automation, and News
This special issue examines the growing importance of algorithms and automation in the gathering, composition, and distribution of news. It connects a long line of research on journalism and computation with scholarly and professional terrain yet to be explored. Taken as a whole, these articles share some of the noble ambitions of the pioneering publications on ‘reporting algorithms’, such as a desire to see computing help journalists in their watchdog role by holding power to account. However, they also go further, firstly by addressing the fuller range of technologies that computational journalism now consists of: from chatbots and recommender systems, to artificial intelligence and atomised journalism. Secondly, they advance the literature by demonstrating the increased variety of uses for these technologies, including engaging underserved audiences, selling subscriptions, and recombining and re-using content. Thirdly, they problematize computational journalism by, for example, pointing out some of the challenges inherent in applying AI to investigative journalism and in trying to preserve public service values. Fourthly, they offer suggestions for future research and practice, including by presenting a framework for developing democratic news recommenders and another that may help us think about computational journalism in a more integrated, structured manner
The mitochondrial Na+/Ca2+ exchanger upregulates glucose dependent Ca2+ signalling linked to insulin secretion.
Mitochondria mediate dual metabolic and Ca(2+) shuttling activities. While the former is required for Ca(2+) signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca(2+) transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na(+)/Ca(2+) exchanger that is linked to Ca(2+) signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX) or of its activity, by a dominant negative construct (dnNCLX), enhanced mitochondrial Ca(2+) influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca(2+). Importantly, NCLX controlled the rate and amplitude of cytosolic Ca(2+) changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca(2+) signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na(+)/Ca(2+) exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca(2+) signals thereby regulating the temporal pattern of insulin secretion in β cells
Recommended from our members
Obesity, diabetes and zinc: A workshop promoting knowledge and collaboration between the UK and Israel, November 28–30, 2016 – Israel
Sponsored by the Friends of Israel Educational Foundation (FIEF) and Ben-Gurion University of the Negev and supported by the EU COST action Zinc-Net (COST TD1304), a three-day collaborative UK-Israel workshop was organized by Drs Assaf Rudich, Imre Lengyel and Arie Moran. Participants from the UK and Israel met at the Desert Iris Hotel, Yeruham, Israel between the 28-30th of November 2016 for in-depth discussions, rather than a lecture series, to set the stage for future collaborative grants and projects on diabetes and zinc. Two days of formal scientific sessions with dynamic and wide-ranging discussions was followed by a day of touring and informal networking in the Negev area. This format was previously recognized by our sponsors as both effective and enjoyable and all participants agreed at the end of the meeting that the 3-days provided an excellent basis for future scientific collaboration. The discussions were centered on diabetes and obesity, already at pandemic levels, and zinc homeostasis which is related to the clinical issues and themes of the meeting. The free-flowing discussions were based on short presentations setting the scene for the six main topics: ‘Diabetes and zinc transporters’, ‘Nutrition related factors’, ‘Biomarkers’, ‘Clinical epidemiology’, ‘the Microbiome and diabetes’, and ‘Related diseases’. The abstract style summary of the sessions is followed by the major discussion points raised by the Authors and other participants (UK: Patrik Rorsman, Oxford University; Alan Stewart, University of St Andrews and Israel: Assaf Rudich, Idit Liberty, Rahel Gol, Guy Las and Amos Katz, Ben-Gurion University; Sarah Zangen, Haddassa University). We hope that readers will find this discourse stimulating and some of the ideas might make their way into their research efforts
S-Nitrosylation of α1-Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination
Background: Human α1-antitrypsin (hAAT) is a circulating anti-inflammatory serine-protease inhibitor that rises during acute phase responses. in vivo, hAAT reduces bacterial load, without directly inhibiting bacterial growth. In conditions of excess nitric-oxide (NO), hAAT undergoes S-nitrosylation (S-NO-hAAT) and gains antibacterial capacity. The impact of S-NO-hAAT on immune cells has yet to be explored.Aim: Study the effects of S-NO-hAAT on immune cells during bacterial infection.Methods: Clinical-grade hAAT was S-nitrosylated and then compared to unmodified hAAT, functionally, and structurally. Intracellular bacterial clearance by THP-1 macrophages was assessed using live Salmonella typhi. Murine peritoneal macrophages were examined, and signaling pathways were evaluated. S-NO-hAAT was also investigated after blocking free mambranal cysteine residues on cells.Results: S-NO-hAAT (27.5 uM) enhances intracellular bacteria elimination by immunocytes (up to 1-log reduction). S-NO-hAAT causes resting macrophages to exhibit a pro-inflammatory and antibacterial phenotype, including release of inflammatory cytokines and induction of inducible nitric oxide synthase (iNOS) and TLR2. These pro-inflammatory effects are dependent upon cell surface thiols and activation of MAPK pathways.Conclusions: hAAT duality appears to be context-specific, involving S-nitrosylation in a nitric oxide rich environment. Our results suggest that S-nitrosylation facilitates the antibacterial activity of hAAT by promoting its ability to activate innate immune cells. This pro-inflammatory effect may involve transferring of nitric oxide from S-NO-hAAT to a free cysteine residue on cellular targets
Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase- 1/IL-18/Interferon-γ-Dependent Mechanism
BACKGROUND: Interleukin (IL)–32 is a newly described proinflammatory cytokine that seems likely to play a role in inflammation and host defense. Little is known about the regulation of IL-32 production by primary cells of the immune system. METHODS AND FINDINGS: In the present study, freshly obtained human peripheral blood mononuclear cells were stimulated with different Toll-like receptor (TLR) agonists, and gene expression and synthesis of IL-32 was determined. We demonstrate that the TLR4 agonist lipopolysaccharide induces moderate (4-fold) production of IL-32, whereas agonists of TLR2, TLR3, TLR5, or TLR9, each of which strongly induced tumor necrosis factor α and IL-6, did not stimulate IL-32 production. However, the greatest amount of IL-32 was induced by the mycobacteria Mycobacterium tuberculosis and M. bovis BCG (20-fold over unstimulated cells). IL-32-induced synthesis by either lipopolysaccharide or mycobacteria remains entirely cell-associated in monocytes; moreover, steady-state mRNA levels are present in unstimulated monocytes without translation into IL-32 protein, similar to other cytokines lacking a signal peptide. IL-32 production induced by M. tuberculosis is dependent on endogenous interferon-γ (IFNγ); endogenous IFNγ is, in turn, dependent on M. tuberculosis–induced IL-18 via caspase-1. CONCLUSIONS: In conclusion, IL-32 is a cell-associated proinflammatory cytokine, which is specifically stimulated by mycobacteria through a caspase-1- and IL-18-dependent production of IFNγ
Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors.
Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections
Personalization Paradox in Behavior Change Apps:Lessons from a Social Comparison-Based Personalized App for Physical Activity
Social comparison-based features are widely used in social computing apps.
However, most existing apps are not grounded in social comparison theories and
do not consider individual differences in social comparison preferences and
reactions. This paper is among the first to automatically personalize social
comparison targets. In the context of an m-health app for physical activity, we
use artificial intelligence (AI) techniques of multi-armed bandits. Results
from our user study (n=53) indicate that there is some evidence that motivation
can be increased using the AI-based personalization of social comparison. The
detected effects achieved small-to-moderate effect sizes, illustrating the
real-world implications of the intervention for enhancing motivation and
physical activity. In addition to design implications for social comparison
features in social apps, this paper identified the personalization paradox, the
conflict between user modeling and adaptation, as a key design challenge of
personalized applications for behavior change. Additionally, we propose
research directions to mitigate this Personalization Paradox
Measurement of the Lifetime Difference Between B_s Mass Eigenstates
We present measurements of the lifetimes and polarization amplitudes for B_s
--> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and
light (L) mass eigenstates in the B_s system are separately measured for the
first time by determining the relative contributions of amplitudes with
definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we
obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07
+{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s
and average Gamma_s, of the decay rates of the two eigenstates, the results are
DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47
+{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters
on 16 March 2005; revisions are for length and typesetting only, no changes
in results or conclusion
- …