32 research outputs found
Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants
Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain–interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions
Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis
In the vertebrate head, mesoderm cells fuse together to form a myofiber, which is attached to specific cranial neural crest (CNC)-derived skeletal elements in a highly coordinated manner. Although it has long been recognized that CNC plays a role in the formation of the head musculature, the precise molecular underpinnings of this process remain elusive. In the present study we explored the nature of the crosstalk between CNC and mesoderm cells during head muscle development, employing three models for genetic perturbations of CNC development in mice, as well as experimental ablation of CNC in chick embryos. We demonstrate that although early myogenesis is CNC-independent, the migration, patterning and differentiation of muscle precursors are regulated by CNC. In the absence of CNC cells, accumulated myoblasts are kept in a proliferative state, presumably because of an increase of Fgf8 in adjacent tissues, which leads to abnormalities in both differentiation and subsequent myofiber organization in the head. These results have uncovered a surprising degree of complexity and multiple distinct roles for CNC in the patterning and differentiation of muscles during craniofacial development. We suggest that CNC cells control craniofacial development by regulating positional interactions with mesoderm-derived muscle progenitors that together shape the cranial musculoskeletal architecture in vertebrate embryos