4 research outputs found

    Effects of salicylic acid on the growth and pathogenicity of Zymoseptoria tritici

    Get PDF
    Introduction: Zymoseptoria tritici, is a species of filamentous fungus and causes the widespread wheat disease Septoria tritici blotch (STB). Salicylic acid has a key role in plant defence reactions and is also involved in the induction of systemic acquired resistance. However, the contribution of SA to the interaction of Z. tritici -wheat in STB is not entirely clear.In this study, it was shown that the Z. tritici mycelial growth and conidia germination were significantly inhibited the presence of increasing concentration of SA in both liquid and solid media. In addition, the effect of SA on pathogenicity of Z. tritici in wheat was investigated. Materials and methods: In this study, the inhibitory effect of SA on Z. tritici at different concentrations (1 to 20 mM) in vitro, and also, the efficacy of its exogenous application in the suppression of STB in wheat under the greenhouse condition were investigated. In vitro evaluation was done on YMDA and YMDB to determine the effect of SA on the germination of conidia and growth of mycelium, respectively.  Susceptible bread wheat cultivar was grown in pot and inoculated with fungus spores and SA in a three-leaf stage for green house experiments. Results: The results showed that the germination ofconidia was completely inhibited by 4 mM SA. Furthermore, in modified YMDA plates at over 0.8 mM, the colonies diameter was reduced significantly. The result of in planta assay indicated that the foliar application of 4 mM SA can significantly reduce the disease symptoms on the wheat leaves. Discussion and conclusion: Regarding our data, it seems that SA shows more inhibitory effect in in vitro experiments than in planta. Moreover, according to the positive effects of SA on STB, the survey results can be considered as a potential approach in the management of this disease

    Inhibition of Tetrodotoxin-Resistant Sodium Current in Dorsal Root Ganglia Neurons Mediated by D1/D5 Dopamine Receptors

    Get PDF
    BACKGROUND: Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. RESULTS: The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. CONCLUSIONS: We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli
    corecore