66 research outputs found
Oxidative Stress in Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple
factors, which may partly explain why it still remains an orphan of adequate therapies. This review
highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive
oxygen species generators, including those produced in the gastrointestinal tract, contribute to
the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically
active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis
and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect
also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and
endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the
physiological antioxidant response. Therefore, modulation of this defense system emerges as an
interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics,
diet, and fecal microbiota transplantation represent new therapeutic approaches targeting
the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual
genetic and epigenetic factors as well. In the near future, precision medicine taking into
consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers,
will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further
personalizing treatments
Integrated Autofluorescence Characterization of a Modified-Diet Liver Model with Accumulation of Lipids and Oxidative Stress
Oxidative stress in fatty livers is mainly generated by impaired mitochondrial β-oxidation, inducing tissue damages and disease progression. Under suitable excitation, light liver endogenous fluorophores can give rise to autofluorescence (AF) emission, the properties of which depend on the organ morphofunctional state. In this work, we characterized the AF properties of a rat liver model of lipid accumulation and oxidative stress, induced by a 1–9-week hypercaloric methionine-choline deficient (MCD) diet administration. The AF analysis (excitation at 366 nm) was performed in vivo, via fiber optic probe, or ex vivo. The contribution of endogenous fluorophores involved in redox reactions and in tissue organization was estimated through spectral curve fitting analysis, and AF results were validated by means of different histochemical and biochemical assays (lipids, collagen, vitamin A, ROS, peroxidised proteins, and lipid peroxidation -TBARS-, GSH, and ATP). In comparison with the control, AF spectra changes found already at 1 week of MCD diet reflect alterations both in tissue composition and organization (proteins, lipopigments, and vitamin A) and in oxidoreductive pathway engagement (NAD(P)H, flavins), with a subsequent attempt to recover redox homeostasis. These data confirm the AF analysis potential to provide a comprehensive diagnostic information on negative effects of oxidative metabolism alteration
Baseline Plasma Gas6 Protein Elevation Predicts Adverse Outcomes in Hospitalized COVID-19 Patients
: Reliable biomarkers allowing early patients' stratification for the risk of adverse outcomes in COVID-19 are lacking. Gas6, together with its tyrosine kinase receptors named TAM, is involved in the regulation of immune homeostasis, fibrosis, and thrombosis. Our aim was to evaluate whether Gas6, sAxl, and sMerTK could represent early predictors of disease evolution either towards a negative (death or need of ICU admission) or a positive (discharge and/or clinical resolution within the first 14 days of hospitalization) outcome. To this purpose, between January and May 2021 (corresponding to third pandemic wave in Italy), 139 consecutive SARS-CoV-2 positive patients were enrolled in a prospective observational study. Plasma levels of these molecules were measured by ELISA at the time of hospitalization and after 7 and 14 days. We observed that higher plasma Gas6 concentrations at hospital admission were associated with a worsening in clinical conditions while lower sMerTK concentrations at baseline and after 7 days of hospitalization were associated with a more favorable outcome. At multivariate analysis, after correction for demographic and COVID-19 severity variables (NEWS2 and PiO2/FiO2), only Gas6 measured at baseline predicted an adverse prognosis with an odds ratio of 1.03 (C.I. 1.01-10.5). At ROC curve analysis, baseline Gas6 levels higher than 58.0 ng/ml predicted a severe disease evolution with 53.3% sensitivity and 77.6% specificity (area under the curve 0.653, p = 0.01, likelihood ratio of 2.38, IQR: 1.46-3.87). Taken together, these results support the hypothesis that a dysregulation in the Gas6/TAM axis could play a relevant role in modulating the course of COVID-19 and suggest that plasma Gas6 may represent a promising prognostic laboratory parameter for this condition
Baseline Plasma Osteopontin Protein Elevation Predicts Adverse Outcomes in Hospitalized COVID-19 Patients
More than three years have passed since the first case, and COVID-19 is still a health concern, with several open issues such as the lack of reliable predictors of a patient's outcome. Osteopontin (OPN) is involved in inflammatory response to infection and in thrombosis driven by chronic inflammation, thus being a potential biomarker for COVID-19. The aim of the study was to evaluate OPN for predicting negative (death or need of ICU admission) or positive (discharge and/or clinical resolution within the first 14 days of hospitalization) outcome. We enrolled 133 hospitalized, moderate-to-severe COVID-19 patients in a prospective observational study between January and May 2021. Circulating OPN levels were measured by ELISA at admission and at day 7. The results showed a significant correlation between higher plasma concentrations of OPN at hospital admission and a worsening clinical condition. At multivariate analysis, after correction for demographic (age and gender) and variables of disease severity (NEWS2 and PiO2/FiO2), OPN measured at baseline predicted an adverse prognosis with an odds ratio of 1.01 (C.I. 1.0-1.01). At ROC curve analysis, baseline OPN levels higher than 437 ng/mL predicted a severe disease evolution with 53% sensitivity and 83% specificity (area under the curve 0.649, p = 0.011, likelihood ratio of 1.76, (95% confidence interval (CI): 1.35-2.28)). Our data show that OPN levels determined at the admission to hospital wards might represent a promising biomarker for early stratification of patients' COVID-19 severity. Taken together, these results highlight the involvement of OPN in COVID-19 evolution, especially in dysregulated immune response conditions, and the possible use of OPN measurements as a prognostic tool in COVID-19
Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial
: As lactoferrin is a nutritional supplement with proven antiviral and immunomodulatory abilities, it may be used to improve the clinical course of COVID-19. The clinical efficacy and safety of bovine lactoferrin were evaluated in the LAC randomized double-blind placebo-controlled trial. A total of 218 hospitalized adult patients with moderate-to-severe COVID-19 were randomized to receive 800 mg/die oral bovine lactoferrin (n = 113) or placebo (n = 105), both given in combination with standard COVID-19 therapy. No differences in lactoferrin vs. placebo were observed in the primary outcomes: the proportion of death or intensive care unit admission (risk ratio of 1.06 (95% CI 0.63-1.79)) or proportion of discharge or National Early Warning Score 2 (NEWS2) ≤ 2 within 14 days from enrollment (RR of 0.85 (95% CI 0.70-1.04)). Lactoferrin showed an excellent safety and tolerability profile. Even though bovine lactoferrin is safe and tolerable, our results do not support its use in hospitalized patients with moderate-to-severe COVID-19
Fatality rate and predictors of mortality in an Italian cohort of hospitalized COVID-19 patients
Clinical features and natural history of coronavirus disease 2019 (COVID-19) differ widely among different countries and during different phases of the pandemia. Here, we aimed to evaluate the case fatality rate (CFR) and to identify predictors of mortality in a cohort of COVID-19 patients admitted to three hospitals of Northern Italy between March 1 and April 28, 2020. All these patients had a confirmed diagnosis of SARS-CoV-2 infection by molecular methods. During the study period 504/1697 patients died; thus, overall CFR was 29.7%. We looked for predictors of mortality in a subgroup of 486 patients (239 males, 59%; median age 71 years) for whom sufficient clinical data were available at data cut-off. Among the demographic and clinical variables considered, age, a diagnosis of cancer, obesity and current smoking independently predicted mortality. When laboratory data were added to the model in a further subgroup of patients, age, the diagnosis of cancer, and the baseline PaO2/FiO2 ratio were identified as independent predictors of mortality. In conclusion, the CFR of hospitalized patients in Northern Italy during the ascending phase of the COVID-19 pandemic approached 30%. The identification of mortality predictors might contribute to better stratification of individual patient risk
- …