2 research outputs found

    3D Matrices for Enhanced Encapsulation and Controlled Release of Anti-Inflammatory Bioactive Compounds in Wound Healing

    No full text
    Current trends in the development of wound dressings are oriented towards the use of biopolymer-based materials, due to their unique properties such as non-toxicity, hydrophilicity, biocompatibility and biodegradability, properties that have advantageous therapeutic characteristics. In this regard, the present study aims to develop hydrogels based on cellulose and dextran (CD) and to reveal their anti-inflammatory performance. This purpose is achieved by incorporating plant bioactive polyphenols (PFs) in CD hydrogels. The assessments include establishing the structural characteristics using attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy, the morphology by scanning electron microscopy (SEM), the swelling degree of hydrogels, the PFs incorporation/release kinetics and the hydrogels’ cytotoxicity, together with evaluation of the anti-inflammatory properties of PFs-loaded hydrogels. The results show that the presence of dextran has a positive impact on the hydrogel’s structure by decreasing the pore size at the same time as increasing the uniformity and interconnectivity of the pores. In addition, there is an increased degree of swelling and of the encapsulation capacity of PFs, with the increase of the dextran content in hydrogels. The kinetics of PFs released by hydrogels was studied according to the Korsmeyer–Peppas model, and it was observed that the transport mechanisms depend on hydrogels’ composition and morphology. Furthermore, CD hydrogels have been shown to promote cell proliferation without cytotoxicity, by successfully culturing fibroblasts and endothelial cells on CD hydrogels (over 80% viability). The anti-inflammatory tests performed in the presence of lipopolysaccharides demonstrate the anti-inflammatory properties of the PFs-loaded hydrogels. All these results provide conclusive evidence on the acceleration of wound healing by inhibiting the inflammation process and support the use of these hydrogels encapsulated with PFs in wound healing applications

    Heterogeneous Periostin Expression in Different Histological Variants of Papillary Thyroid Carcinoma

    No full text
    Background. Periostin (PN) epithelial and stromal overexpression in tumor pathology has been studied according to tumor growth, angiogenesis, invasiveness, and metastasis, but a limited number of studies address PN in thyroid tumors. Aim. Our study aimed to analyze PN expression in different histological variants of PTC and to correlate its expression with the clinicopathological prognostic factors. Material and Methods. PN expression has been immunohistochemically assessed in 50 cases of PTC (conventional, follicular, oncocytic, macrofollicular, and tall cell variants), in tumor epithelial cells and intratumoral stroma. The association between PN expression and clinicopathological characteristics has been evaluated. Results. Our results show that PTC presented different patterns of PN immunoreaction, stromal PN being significantly associated with advanced tumor stage and extrathyroidal extension. No correlations were found between PN overexpression in tumor epithelial cells and clinicopathological features, except for specific histological variants, the highest risk of poor outcome being registered for the conventional subtype in comparison to the oncocytic type. Conclusions. Our study demonstrates differences in PN expression in histological subtypes of PTC. Our results plead in favor of a dominant protumorigenic role of stromal PN, while the action of epithelial PN is less noticeable
    corecore