2 research outputs found

    Training Higher School Students in Rapid Prototyping Technology as a Final Stage of Their Preparation for Innovative Activities

    Get PDF
    Introduction. The methodological systems of preparation for innovative engineering activity involve the involvement of students in all stages of the innovation cycle, including obtaining an intangible innovative product. However, the inability to obtain in students a material innovative product reduces the effectiveness of the preparation of these systems. The purpose of this study is to create a methodical system for preparing students for innovative research activities based on their involvement in all stages of obtaining a material innovative product using additive technologies. Materials and Methods. For writing the article the authors used the main points of the integrated approach to learning (integration of theoretical and practical training of innovative research activities and interdisciplinary integration of various branches of science (pedagogy, mathematical modeling, 3D modeling, additive technologies, innovation). Results. The methodical system of training students of technical higher education institution has been created and implemented, ensuring their involvement in all stages of the innovation cycle due to the use of rapid prototyping technologies. The effectiveness of technologies is confirmed by the results of the pedagogical experiment. Discussion and Conclusions. The performed researches allowed to create a methodical system for training students of technical universities of innovative research activities based on rapid prototyping technologies. This method significantly improves the effectiveness of training. It ensures the participation of students in all stages of obtaining a material innovative product: during the study of the course, and during classroom sessions. This method was developed and tested for the implementation at National Research Ogarev Mordovia State University. It provides the practical significance of the study considered in the article. Further development of the material presented in the article can be related to the expansion of the infrastructure of the Rapid Pro university center for designing and prototyping and attracting students to manufacturing industrial products

    SPECIFICS OF ELABORATING METHODOLOGY TO TEACH INNOVATIVE COMPETENCE USING EMBEDDABLE MODULE

    No full text
    Introduction: the article is concerned with the development of competence when teaching students innovative activity. The analysis of bachelor’s degree programmes in engineering and technology demonstrates the absence of competencies for innovation training. The curricula of the Russian universities do not contain any academic disciplines for teaching innovation as well as there is no definition of “engineering activities”, and “innovation”. Nethertheless the qualification requirements describe some separate components such as R&D, implementation and use of technical and technological innovations implying management of intellectual activity and its results for all occupations, hence mandatory training of bachelor degree students in innovative activities. Materials and Methods: the authors used: a) theoretical methods: analysis of philosophical, scientific, technical, engineering, psychological and educational literature; analysis and extrapolation of the research results and teaching experience; modeling of pedagogical situations, analysis of educational standards, foreign and domestic programs of technical training, textbooks and manuals; b) scientific methods: generalization, classification, ordering, compare, comparison, modeling; c) methods of special research: a system-element method, system-structural and system-functional analysis of the training content, analysis and generalization of pedagogical experience in teaching courses at universities; d) experimental and psychology diagnostic methods. Results: the authors developed and implemented the method of teaching engineering students innovative activities based on adding flexible module to core curriculum, a case study of the National Research Mordovia State University. Discussion and Conclusions: the results of the research underscore the significance of the innovation competence by including innovative training module into structure of technical disciplines, as well as specify the structure, the core part, invariable and variable parts. The article reveals the potential of such integration in training students in innovative engineering activities within the core teaching methodology
    corecore