12 research outputs found

    The Endo-siRNA Pathway Is Essential for Robust Development of the Drosophila Embryo

    Get PDF
    Background: Robustness to natural temperature fluctuations is critical to proper development in embryos and to cellular functions in adult organisms. However, mechanisms and pathways which govern temperature compensation remain largely unknown beyond circadian rhythms. Pathways which ensure robustness against temperature fluctuations may appear to be nonessential under favorable, uniform environmental conditions used in conventional laboratory experiments where there is little variation for which to compensate. The endo-siRNA pathway, which produces small double-stranded RNAs in Drosophila, appears to be nonessential for robust development of the embryo under ambient uniform temperature and to be necessary only for viral defense. Embryos lacking a functional endo-siRNA pathway develop into phenotypically normal adults. However, we hypothesized that small RNAs may regulate the embryo’s response to temperature, as a ribonucleoprotein complex has been previously shown to mediate mammalian cell response to heat shock. Principal Findings: Here, we show that the genes DICER-2 and ARGONAUTE2, which code for integral protein components of the endo-siRNA pathway, are essential for robust development and temperature compensation in the Drosophila embryo when exposed to temperature perturbations. The regulatory functions of DICER-2 and ARGONAUTE2 were uncovered by using microfluidics to expose developing Drosophila embryos to a temperature step, in which each half of the embryo develops at a different temperature through developmental cycle 14. Under this temperature perturbation, dicer-2 or argonaute2 embryos displayed abnormal segmentation. The abnormalities in segmentation are presumably due to the inability of the embryo to compensate for temperature-induced differences in rate of development and to coordinate developmental timing in the anterior and posterior halves. A deregulation of the length of nuclear division cycles 10–14 is also observed in dicer-2 embryos at high temperatures. Conclusions: Results presented herein uncover a novel function of the endo-siRNA pathway in temperature compensation and cell cycle regulation, and we hypothesize that the endo-siRNA pathway may regulate the degradation of maternal cell cycle regulators. Endo-siRNAs may have a more general role buffering against environmental perturbations in other organisms

    Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks

    Get PDF
    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are non-equilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networks-hemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to predict the dynamics of initiation and propagation of blood clotting and tested these predictions with human blood plasma by using microfluidics. We discovered that both initiation and propagation of clotting are regulated by a threshold response to the concentration of activators of clotting, and that clotting is sensitive to the spatial localization of stimuli. To understand the dynamics of patterning of the Drosophila embryo, we used microfluidics to perturb the environment around a developing embryo and observe the effects of this perturbation on the expression of Hunchback, a protein whose localization is essential to proper development. We found that the mechanism that is responsible for Hunchback positioning is asymmetric, time-dependent, and more complex than previously proposed by studies of individual reactions. Overall, these approaches provide strategies for simplifying, modeling, and probing complex networks without sacrificing the functionality of the network. Such network-level strategies may be most useful for understanding systems with non-linear interactions where spatial dynamics is essential for function. In addition, microfluidics provides an opportunity to investigate the mechanisms responsible for robust functioning of complex networks. By creating nonideal, stressful, and perturbed environments, microfluidic experiments could reveal the function of pathways thought to be nonessential under ideal conditions

    Chemical Stimulation of the Arabidopsis thaliana Root using Multi-Laminar Flow on a Microfluidic Chip

    Get PDF
    In this article, we developed a “plant on a chip” microfluidic platform that can control the local chemical environment around live roots of Arabidopsis thaliana with high spatial resolution using multi-laminar flow. We characterized the flow profile around the Arabidopsis root, and verified that the shear forces within the device ([similar]10 dyne cm^−2) did not impede growth of the roots. Our platform was able to deliver stimuli to the root at a spatial resolution of 10–800 µm. Further, the platform was validated by exposing desired regions of the root with a synthetic auxin derivative, 2,4-dichlorophenoxyacetic acid (2,4-D), and its inhibitor N-1-naphthylphthalamic acid (NPA). The response to the stimuli was observed using a DR5::GFP Arabidopsis line, where GFP expression is coupled to the auxin response regulator DR5. GFP expression in the root matched the position of the flow-focused stream containing 2,4-D. When the regions around the 2,4-D stimulus were exposed to the auxin transport inhibitor NPA, the active and passive transport mechanisms of auxin could be differentiated, as NPA blocks active cell-to-cell transport of auxin. Finally, we demonstrated that local 2,4-D stimulation in a [similar]10 µm root segment enhanced morphological changes such as epidermal hair growth. These experiments were proof-of-concept and agreed with the results expected based on known root biology, demonstrating that this “root on a chip” platform can be used to test how root development is affected by any chemical component of interest, including nitrogen, phosphate, salts, and other plant hormones

    Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics

    Get PDF
    Biochemical networks are perturbed both by fluctuations in environmental conditions and genetic variation. These perturbations must be compensated for, especially when they occur during embryonic pattern formation. Complex chemical reaction networks displaying spatiotemporal dynamics have been controlled and understood by perturbing their environment in space and time. Here, we apply this approach using microfluidics to investigate the robust network in Drosophila melanogaster that compensates for variation in the Bicoid morphogen gradient. We show that the compensation system can counteract the effects of extremely unnatural environmental conditions-a temperature step-in which the anterior and posterior halves of the embryo are developing at different temperatures and thus at different rates. Embryonic patterning was normal under this condition, suggesting that a simple reciprocal gradient system is not the mechanism of compensation. Time-specific reversals of the temperature step narrowed down the critical period for compensation to between 65 and 100 min after onset of embryonic development. The microfluidic technology used here may prove useful to future studies, as it allows spatial and temporal regulation of embryonic development

    A Precise Bicoid Gradient Is Nonessential during Cycles 11–13 for Precise Patterning in the Drosophila Blastoderm

    Get PDF
    Background: During development, embryos decode maternal morphogen inputs into highly precise zygotic gene expression. The discovery of the morphogen Bicoid and its profound effect on developmental programming in the Drosophila embryo has been a cornerstone in understanding the decoding of maternal inputs. Bicoid has been described as a classical morphogen that forms a concentration gradient along the antero-posterior axis of the embryo by diffusion and initiates expression of target genes in a concentration-dependent manner in the syncytial blastoderm. Recent work has emphasized the stability of the Bicoid gradient as a function of egg length and the role of nuclear dynamics in maintaining the Bicoid gradient. Bicoid and nuclear dynamics were observed but not modulated under the ideal conditions used previously. Therefore, it has not been tested explicitly whether a temporally stable Bicoid gradient prior to cellularization is required for precise patterning. Principal Findings: Here, we modulate both nuclear dynamics and the Bicoid gradient using laminar flows of different temperature in a microfluidic device to determine if stability of the Bicoid gradient prior to cellularization is essential for precise patterning. Dramatic motion of both cytoplasm and nuclei was observed prior to cellularization, and the Bicoid gradient was disrupted by nuclear motion and was highly abnormal as a function of egg length. Despite an abnormal Bicoid gradient during cycles 11–13, Even-skipped patterning in these embryos remained precise. Conclusions: These results indicate that the stability of the Bicoid gradient as a function of egg length is nonessential during syncytial blastoderm stages. Further, presumably no gradient formed by simple diffusion on the scale of egg length could be responsible for the robust antero-posterior patterning observed, as severe cytoplasmic and nuclear motion would disrupt such a gradient. Additional mechanisms for how the embryo could sense its dimensions and interpret the Bicoid gradient are discussed

    Pachymeningeal involvement in POEMS syndrome: MRI and histopathological study.

    No full text
    Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, skin changes (POEMS) syndrome is a rare plasma cell disease. Vascular endothelial growth factor (VEGF) seems to play a pathogenic role. Peripheral neuropathy is the main neurological feature. Cranial pachymeningitis has occasionally been reported, but no histopathological studies have been performed. The authors extensively evaluated the central nervous system MRI in 11 patients (seven men, four women; mean age at diagnosis 54.45 years) with POEMS syndrome. In two patients, meningeal histopathology with staining for VEGF and VEGF receptor was performed, and pachymeningeal involvement characterised at histopathological, immunohistochemical and confocal microscopy levels. Nine patients presented with cranial pachymeningitis. One patient suffered from migraine, and none complained of cranial nerve palsies or visual loss. None showed any MRI signs of spinal pachymeningitis. No correlation was found with disease duration and VEGF serum level. Histopathology showed hyperplasia of meningothelial cells, neovascularisation and obstructive vessel remodelling, without inflammation. VEGF and VEGF receptor were strongly coexpressed on endothelium, smooth-muscle cells of arterioles and meningothelial cells. In conclusion, POEMS patients present a high prevalence of meningeal involvement. The histological changes, different from those present in chronic pachymeningitis of other aetiology, suggest a possible VEGF role in the pathogenesis of the meningeal remodelling
    corecore