9 research outputs found

    Investigating Six Common Pesticides Residues and Dietary Risk Assessment of Romanian Wine Varieties

    No full text
    The food and environmental safety debate extends to the use of pesticides in agriculture including the wine sector, which is one of the most intensive pesticide users across the agricultural sector. Pesticide utilisation is a common agricultural practice to protect fruits and plants from pathogens and insects while maintaining high production levels. Grapevine is generally a crop that is subject to intensive phytosanitary treatments, and therefore, it can be assumed that pesticide residues will accumulate in the vine-shoots and, later on, end up in the grapes and wines. The aim of this study was to determine the pesticide content in red, rosé, and white wines after phytosanitary treatments applied in the vineyard and their impact on long-term dietary risks. The following six pesticides were analysed: oxathiapiprolin, myclobutanil, iprovalicarb, tebuconazole, chlorantraniliprole, and acetamiprid. Samples were extracted using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method and analysed for the residues of pesticides by liquid chromatography-tandem mass spectrometry. Results indicated that the observed pesticides in the wine samples ranged between 0.05 and 0.75 ng/g. Dietary risks due to pesticide residues for women and men were evaluated using the estimated daily intake (EDI), hazard quotient (HQ), and hazard index (HI) of wines. The HQs and HIs did not surpass the 1 value (HQ, HI < 1) for both women and men, denoting that the concentrations of pesticide residues in these wine samples do not pose any immediate risk to consumers. Moreover, a pesticide residue intake model (PRIMo) model analysis was conducted, and the results suggest that European adult consumers have a low pesticide residue intake due to moderate wine consumption. However, pesticide residue intakes have been associated with several human health problems and high toxicity levels, therefore reliable analytical methods to monitor their presence in horticultural crops is crucial for clean and safe food products and healthy consumers

    Usnic Acid and Usnea barbata (L.) F.H. Wigg. Dry Extracts Promote Apoptosis and DNA Damage in Human Blood Cells through Enhancing ROS Levels

    No full text
    Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs

    Elemental Analysis and In Vitro Evaluation of Antibacterial and Antifungal Activities of <i>Usnea barbata</i> (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania

    No full text
    This study aims to complete our research on Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from the Călimani Mountains, Romania, with an elemental analysis and to explore its antibacterial and antifungal potential. Thus, we analyzed twenty-three metals (Ca, Fe, Mg, Mn, Zn, Al, Ag, Ba, Co, Cr, Cu, Li, Ni, Tl, V, Mo, Pd, Pt, Sb, As, Pb, Cd, and Hg) in dried U. barbata lichen (dUB) by inductively coupled plasma mass spectrometry (ICP-MS). For the second study, we performed dried lichen extraction with five different solvents (ethyl acetate, acetone, ethanol, methanol, and water), obtaining five U. barbata dry extracts (UBDE). Then, using an adapted disc diffusion method (DDM), we examined their antimicrobial activity against seven bacterial species—four Gram-positive (Staphylococcus aureus, Enterococcus casseliflavus, Streptococcus pyogenes, and Streptococcus pneumoniae) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa)—and two fungi species (Candida albicans and Candida parapsilosis). Usnic acid (UA) was used as a positive control. The ICP-MS data showed a considerable Ca content (979.766 µg/g), followed by, in decreasing order, Mg, Mn, Al, Fe, and Zn. Other elements had low levels: Ba, Cu, Pb, and Cr (3.782–1.002 µg/g); insignificant amounts (Enterococcus casseliflavus showing the highest level (IZs = 20–22 mm). The most susceptible Gram-negative bacterium was Pseudomonas aeruginosa (IZs = 16–20 mm); the others were insensitive to all U. barbata dry extracts (IZs = 0 mm). The inhibitory activity of UBDE and UA on Candida albicans was slightly higher than on Candida parapsilosis

    Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere

    No full text
    Nymphaea alba is an aquatic flowering plant from the Nymphaeaceae family that has been used for hundreds of years in traditional herbal medicine. The plant is characterized by different phytochemicals, depending on the geographical location. Herein, we have carried out, for the first time, the separation and HPLC-MS/MS identification of some antioxidant compounds, such as polyphenols and flavonoids from N. alba extracts from the Danube Delta Biosphere, and investigated their possible antiradical properties. An ultrasonic method has been exhaustively used for the extraction of the antioxidant compounds from the different anatomic parts of N. alba (fruit, flower, leaf, stem, and root). The extracts that were obtained using ultrasound irradiation showed a large polyphenol (19.42 mg EqGA/100 mg extract) and flavonoid (0.97 mg EqQ/100 mg extract) content. The fruit and flower extracts showed the highest antioxidant activity index (AAI). Among the 27 phytochemical compounds identified in all of the N. alba extracts, rutin and p-coumaric acid were found as the major components. The content of macroelements and microelements in N. alba extracts were compared, and it was found that their concentrations depend on the different anatomic parts of the plant. This research contributes to the study of Nymphaeaceae family, being the first exhaustive phytochemical study of N. alba from a wild population in Romania

    CO2 supercritical extraction and microencapsulation of oleoresins from rosehip fruits for getting powders with multiple applications

    No full text
    The supercritical fluids extraction (SFE) was used to extract the oleoresins from rosehip, followed by an in-depth phytochemical analysis and the development of two design-customized powders for different food and pharmaceutical applications. The SFE experiments allowed obtaining an oleoresins extraction yield of 11.85%. Two fractions were separated (S40 and S45), with significantly different phytochemical profile (p < 0.05), highlighting the efficiency of extraction of fatty acids in S40 extract, whereas the extraction of polyphenols, phytosterols, carotenoids and polyphenols was favored in S45 extract. The phytochemical profile revealed that the linoleic acid (C18:2) and α-linolenic acid (C18:3) represented approximatively 82% and 58% from the total fatty acid content in S40 and S45, respectively. α-Tocopherol and γ-tocopherol prevailed in both extract fractions, with a higher concentration in S45 (229.66 mg/g dry matter (DM) and 112.36 mg/g DM, respectively), whereas β-sitosterol was the major phytosterol in S45 fraction (118.75 mg/g DM). The S40 fraction was used to design two microencapsulated powders, by combining emulsification, complex coarcevation and freeze-drying. In order to develop new wall materials, with unique properties, the soy protein isolates were used for cross-linked reactions, by using an approach in one step (transglutaminase mediated) (coded as N) and two-steps (heat-induced and transglutaminase mediated) (coded as T). The N powder showed a better phytochemical content, leading to a higher antioxidant activity (5.27 mM Trolox equivalents/g DM), whereas for variant T, the bioactive were apparently doubled encapsulated

    Advances in the Characterization of Usnea barbata (L.) Weber ex F.H. Wigg from C&#259;limani Mountains, Romania

    No full text
    Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) is a medicinal representative of the lichens from the Usnea genus (Parmeliaceae, lichenized Ascomycetes), containing bioactive secondary metabolites. The aim of this study is a comparative analysis between two separated parts of the thallus layers: medulla&ndash;cortex (mcUB) and central cord (ccUB) and the whole dried U. barbata thallus (dUB). These three samples were examined regarding color differences. The U. barbata thallus morphology was examined through fluorescent microscopy (FM) and scanning electron microscopy (SEM). The mineral content was measured using inductively coupled plasma mass spectrometry (ICP-MS), and Fourier transform infrared spectroscopy (FT-IR) preliminarily established the differences in the metabolite content. Finally, extracts in different solvents (ethanol and acetone) were obtained from all studied samples, and their total phenolic content (TPC) and free radical scavenging activity (antiradical activity, AA) were evaluated by spectrophotometry. The ICP-MS results showed that from 23 elements analyzed, 18 minerals were quantified in mcUB, 13 in dUB, and only 12 in ccUB. The ccUB fraction recorded the lowest mineral content, color intensity (chroma), luminosity (L*), and TPC value, followed in increasing order by dUB and mcUB. FT-IR spectra displayed different peaks in ccUB and dUB samples compared to mcUB. The mcUB fraction also showed the highest TPC, significantly correlated with AA. However, dUB had the highest antiradical activity, followed by mcUB and ccUB, with noticeable differences in the acetone extract. The final correlation between all variable data obtained indicates that 99.31% of the total variance was associated with all minerals, total phenolics, and color parameters and was also related to the antiradical activity. These obtained results complete our previous studies on autochthonous U. barbata. Moreover, being a source of bioactive metabolites, extracting them from the mcUB fraction could increase this process&rsquo;s yield and selectivity

    Advances in the Characterization of <i>Usnea barbata</i> (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania

    No full text
    Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) is a medicinal representative of the lichens from the Usnea genus (Parmeliaceae, lichenized Ascomycetes), containing bioactive secondary metabolites. The aim of this study is a comparative analysis between two separated parts of the thallus layers: medulla–cortex (mcUB) and central cord (ccUB) and the whole dried U. barbata thallus (dUB). These three samples were examined regarding color differences. The U. barbata thallus morphology was examined through fluorescent microscopy (FM) and scanning electron microscopy (SEM). The mineral content was measured using inductively coupled plasma mass spectrometry (ICP-MS), and Fourier transform infrared spectroscopy (FT-IR) preliminarily established the differences in the metabolite content. Finally, extracts in different solvents (ethanol and acetone) were obtained from all studied samples, and their total phenolic content (TPC) and free radical scavenging activity (antiradical activity, AA) were evaluated by spectrophotometry. The ICP-MS results showed that from 23 elements analyzed, 18 minerals were quantified in mcUB, 13 in dUB, and only 12 in ccUB. The ccUB fraction recorded the lowest mineral content, color intensity (chroma), luminosity (L*), and TPC value, followed in increasing order by dUB and mcUB. FT-IR spectra displayed different peaks in ccUB and dUB samples compared to mcUB. The mcUB fraction also showed the highest TPC, significantly correlated with AA. However, dUB had the highest antiradical activity, followed by mcUB and ccUB, with noticeable differences in the acetone extract. The final correlation between all variable data obtained indicates that 99.31% of the total variance was associated with all minerals, total phenolics, and color parameters and was also related to the antiradical activity. These obtained results complete our previous studies on autochthonous U. barbata. Moreover, being a source of bioactive metabolites, extracting them from the mcUB fraction could increase this process’s yield and selectivity

    Antioxidant, Cytotoxic, and Rheological Properties of Canola Oil Extract of Usnea barbata (L.) Weber ex F.H. Wigg from C&#259;limani Mountains, Romania

    No full text
    Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 &plusmn; 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 &plusmn; 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32&ndash;37 &deg;C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents
    corecore