12 research outputs found

    Seizure-Induced Potentiation of AMPA Receptor-Mediated Synaptic Transmission in the Entorhinal Cortex

    Get PDF
    Excessive excitation is considered one of the key mechanisms underlying epileptic seizures. We investigated changes in the evoked postsynaptic responses of medial entorhinal cortex (ERC) pyramidal neurons by seizure-like events (SLEs), using the modified 4-aminopyridine (4-AP) model of epileptiform activity. Rat brain slices were perfused with pro-epileptic solution contained 4-AP and elevated potassium and reduced magnesium concentration. We demonstrated that 15-min robust epileptiform activity in slices leads to an increase in the amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated component of the evoked response, as well as an increase in the polysynaptic γ-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptor-mediated components. The increase in AMPA-mediated postsynaptic conductance depends on NMDA receptor activation. It persists for at least 15 min after the cessation of SLEs and is partly attributed to the inclusion of calcium-permeable AMPA receptors in the postsynaptic membrane. The mathematical modeling of the evoked responses using the conductance-based refractory density (CBRD) approach indicated that such augmentation of the AMPA receptor function and depolarization by GABA receptors results in prolonged firing that explains the increase in polysynaptic components, which contribute to overall network excitability. Taken together, our data suggest that AMPA receptor enhancement could be a critical determinant of sustained status epilepticus (SE)

    Insertion of Calcium-Permeable AMPA Receptors during Epileptiform Activity In Vitro Modulates Excitability of Principal Neurons in the Rat Entorhinal Cortex

    No full text
    Epileptic activity leads to rapid insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) into the synapses of cortical and hippocampal glutamatergic neurons, which generally do not express them. The physiological significance of this process is not yet fully understood; however, it is usually assumed to be a pathological process that augments epileptic activity. Using whole-cell patch-clamp recordings in rat entorhinal cortex slices, we demonstrate that the timing of epileptiform discharges, induced by 4-aminopyridine and gabazine, is determined by the shunting effect of Ca2+-dependent slow conductance, mediated predominantly by K+-channels. The blockade of CP-AMPARs by IEM-1460 eliminates this extra conductance and consequently increases the rate of discharge generation. The blockade of NMDARs reduced the additional conductance to a lesser extent than the blockade of CP-AMPARs, indicating that CP-AMPARs are a more significant source of intracellular Ca2+. The study’s main findings were implemented in a mathematical model, which reproduces the shunting effect of activity-dependent conductance on the generation of discharges. The obtained results suggest that the expression of CP-AMPARs in principal neurons reduces the discharge generation rate and may be considered as a protective mechanism

    Impairments of Long-Term Synaptic Plasticity in the Hippocampus of Young Rats during the Latent Phase of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy

    No full text
    Status epilepticus (SE) causes persistent abnormalities in the functioning of neuronal networks, often resulting in worsening epileptic seizures. Many details of cellular and molecular mechanisms of seizure-induced changes are still unknown. The lithium–pilocarpine model of epilepsy in rats reproduces many features of human temporal lobe epilepsy. In this work, using the lithium–pilocarpine model in three-week-old rats, we examined the morphological and electrophysiological changes in the hippocampus within a week following pilocarpine-induced seizures. We found that almost a third of the neurons in the hippocampus and dentate gyrus died on the first day, but this was not accompanied by impaired synaptic plasticity at that time. A diminished long-term potentiation (LTP) was observed following three days, and the negative effect of SE on plasticity increased one week later, being accompanied by astrogliosis. The attenuation of LTP was caused by the weakening of N-methyl-D-aspartate receptor (NMDAR)-dependent signaling. NMDAR-current was more than two-fold weaker during high-frequency stimulation in the post-SE rats than in the control group. Application of glial transmitter D-serine, a coagonist of NMDARs, allows the enhancement of the NMDAR-dependent current and the restoration of LTP. These results suggest that the disorder of neuron–astrocyte interactions plays a critical role in the impairment of synaptic plasticity

    Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from <i>Aralia elata</i> var. <i>mandshurica</i> (Rupr. & Maxim.) J. Wen

    No full text
    The roots of the medicinal plant Aralia elata are rich in biologically active natural products, with triterpene saponins constituting one of their major groups. These metabolites can be efficiently extracted by methanol and ethanol. Due to their low toxicity, natural deep eutectic solvents (NADES) were recently proposed as promising alternative extractants for the isolation of natural products from medicinal plants. However, although NADES-based extraction protocols are becoming common in routine phytochemical work, their application in the isolation of triterpene saponins has not yet been addressed. Therefore, here, we address the potential of NADES in the extraction of triterpene saponins from the roots of A. elata. For this purpose, the previously reported recoveries of Araliacea triterpene saponins in extraction experiments with seven different acid-based NADES were addressed by a targeted LC-MS-based quantitative approach for, to the best of our knowledge, the first time. Thereby, 20 triterpene saponins were annotated by their exact mass and characteristic fragmentation patterns in the total root material, root bark and root core of A. elata by RP-UHPLC-ESI-QqTOF-MS, with 9 of them being identified in the roots of this plant for the first time. Triterpene saponins were successfully extracted from all tested NADES, with the highest efficiency (both in terms of the numbers and recoveries of individual analytes) achieved using a 1:1 mixture of choline chloride and malic acid, as well as a 1:3 mixture of choline chloride and lactic acid. Thereby, for 13 metabolites, NADES were more efficient extractants in comparison with water and ethanol. Our results indicate that new, efficient NADES-based extraction protocols, giving access to high recoveries of triterpene saponins, might be efficiently employed in laboratory practice. Thus, our data open the prospect of replacing alcohols with NADES in the extraction of A. elata roots

    Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat

    No full text
    Febrile seizures (FSs) are a relatively common early-life condition that can cause CNS developmental disorders, but the specific mechanisms of action of FS are poorly understood. In this work, we used hyperthermia-induced FS in 10-day-old rats. We demonstrated that the efficiency of glutamatergic synaptic transmission decreased rapidly after FS by recording local field potentials. This effect was transient, and after two days there were no differences between control and post-FS groups. During early ontogeny, the proportion of calcium-permeable (CP)-AMPA receptors in the synapses of the principal cortical and hippocampal neurons is high. Therefore, rapid internalization of CP-AMPA receptors may be one of the mechanisms underlying this phenomenon. Using the whole-cell patch-clamp method and the selective CP-AMPA receptor blocker IEM-1460, we tested whether the proportion of CP-AMPA receptors changed. We have demonstrated that FS rapidly reduces synaptic CP-AMPA receptors in both the hippocampus and the entorhinal cortex. This process was accompanied by a sharp decrease in the calcium permeability of the membrane of principal neurons, which we revealed in experiments with kainate-induced cobalt uptake. Our experiments show that FSs cause rapid changes in the function of the glutamatergic system, which may have compensatory effects that prevent excessive excitotoxicity and neuronal death

    Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots

    No full text
    The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators
    corecore