3 research outputs found

    Elevated Lipoprotein(a) Level Influences Familial Hypercholesterolemia Diagnosis

    No full text
    Familial hypercholesterolemia (FH) and elevated lipoprotein(a) [Lp(a)] level are the most common inherited disorders of lipid metabolism. This study evaluated the impact of high Lp(a) level on accuracy Dutch Lipid Clinic Network (DLCN) criteria of heterozygous FH diagnosis. A group of 206 individuals not receiving lipid-lowering medication with low-density lipoprotein cholesterol (LDL-C) >4.9 mmol/L was chosen from the Russian FH Registry. LDL-C corrected for Lp(a)-cholesterol was calculated as LDL-C − 0.3 × Lp(a). DLCN criteria were applied before and after adjusting LDL-C concentration. Of the 206 patients with potential FH, a total of 34 subjects (17%) were reclassified to less severe FH diagnosis, 13 subjects of them (6%) were reclassified to “unlike” FH. In accordance with Receiver Operating Characteristic curve, Lp(a) level ≥40 mg/dL was associated with FH re-diagnosing with sensitivity of 63% and specificity of 78% (area under curve = 0.7, 95% CI 0.7–0.8, p < 0.001). The reclassification was mainly observed in FH patients with Lp(a) level above 40 mg/dL, i.e., 33 (51%) with reclassified DLCN criteria points and 22 (34%) with reclassified diagnosis, compared with 21 (15%) and 15 (11%), respectively, in patients with Lp(a) level less than 40 mg/dL. Thus, LDL-C corrected for Lp(a)-cholesterol should be considered in all FH patients with Lp(a) level above 40 mg/dL for recalculating points in accordance with DLCN criteria

    Lipoprotein(a), Immune Cells and Cardiovascular Outcomes in Patients with Premature Coronary Heart Disease

    No full text
    The detection of lipoprotein(a) [Lp(a)] in the artery wall at the stage of lipid-bands formation may indicate that it participates in the atherosclerosis local nonspecific inflammatory process. Innate immune cells are involved in atherogenesis, with monocytes playing a major role in the initiation of atherosclerosis, while neutrophils can contribute to plaque destabilization. This work studies the relationship between Lp(a), immune blood cells and major adverse cardiovascular events (MACE) in patients with the early manifestation of coronary heart disease (CHD). The study included 200 patients with chronic CHD, manifested up to the age of 55 in men and 60 in women. An increased Lp(a) concentration [hyperLp(a)] was shown to predict cardiovascular events in patients with premature CHD with long-term follow-up. According to the logistic regression analysis results, an increase in the monocyte count with OR = 4.58 (95% CI 1.04–20.06) or lymphocyte-to-monocyte ratio with OR = 0.82 (0.68–0.99), (p < 0.05 for both) was associated with MACE in patients with early CHD, regardless of gender, age, classical risk factors, atherogenic lipoproteins concentration and statin intake. The combination of an increased monocyte count and hyperLp(a) significantly increased the proportion of patients with early CHD with subsequent development of MACE (p = 0.02, ptrend = 0.003). The odds of cardiovascular events in patients with early CHD manifestation were highest in patients with an elevated lymphocyte-to-monocyte ratio and an elevated Lp(a) level. A higher neutrophil blood count and an elevated neutrophil-to-lymphocyte ratio determined the faster development of MACE in patients with a high Lp(a) concentration. The data obtained in this study suggest that the high atherothrombogenicity of Lp(a) is associated with the “inflammatory” component and the innate immune cells involvement in this process. Thus, the easily calculated immunological ratios of blood cells and Lp(a) concentrations can be considered simple predictors of future cardiovascular events

    The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis

    No full text
    Background and aims: Chronic inflammation associated with the uncontrolled activation of innate and acquired immunity plays a fundamental role in all stages of atherogenesis. Monocytes are a heterogeneous population and each subset contributes differently to the inflammatory process. A high level of lipoprotein(a) (Lp(a)) is a proven cardiovascular risk factor. The aim of the study was to investigate the association between the increased concentration of Lp(a) and monocyte subpopulations in patients with a different severity of coronary atherosclerosis. Methods: 150 patients (124 males) with a median age of 60 years undergoing a coronary angiography were enrolled. Lipids, Lp(a), autoantibodies, blood cell counts and monocyte subpopulations (classical, intermediate, non-classical) were analyzed. Results: The patients were divided into two groups depending on the Lp(a) concentration: normal Lp(a) < 30 mg/dL (n = 82) and hyperLp(a) ≥ 30 mg/dL (n = 68). Patients of both groups were comparable by risk factors, autoantibody levels and blood cell counts. In patients with hyperlipoproteinemia(a) the content (absolute and relative) of non-classical monocytes was higher (71.0 (56.6; 105.7) vs. 62.2 (45.7; 82.4) 103/mL and 17.7 (13.0; 23.3) vs. 15.1 (11.4; 19.4) %, respectively, p < 0.05). The association of the relative content of non-classical monocytes with the Lp(a) concentration retained a statistical significance when adjusted for gender and age (r = 0.18, p = 0.03). The severity of coronary atherosclerosis was associated with the Lp(a) concentration as well as the relative and absolute (p < 0.05) content of classical monocytes. The high content of non-classical monocytes (OR = 3.5, 95% CI 1.2–10.8) as well as intermediate monocytes (OR = 8.7, 2.5–30.6) in patients with hyperlipoproteinemia(a) were associated with triple-vessel coronary disease compared with patients with a normal Lp(a) level and a low content of monocytes. Conclusion: Hyperlipoproteinemia(a) and a decreased quantity of classical monocytes were associated with the severity of coronary atherosclerosis. The expansion of CD16+ monocytes (intermediate and non-classical) in the presence of hyperlipoproteinemia(a) significantly increased the risk of triple-vessel coronary disease
    corecore