57 research outputs found

    A review of LCA assessments of forest-based bioeconomy products and processes under an ecosystem services perspective

    Get PDF
    The emergence of politically driven bioeconomy strategies worldwide calls for considering the ecological issues associated with bio-based products. Traditionally, life cycle analysis (LCA) approaches are key tools used to assess impacts through product life cycles, but they present limitations regarding the accounting of multiple ecosystem service-related issues, at both the land-use and supply chain levels. Based on a systematic review of empirical articles, this study provides insights on using LCA assessments to account for ecosystem service-related impacts in the context of bioeconomy activities. We address the following research questions: what is the state of the art of the literature performing LCA assessments of forest-based bioeconomy activities, including the temporal distribution, the geographic areas and products/processes at study, and the approaches and methods used? 2. Which impacts and related midpoints are considered by the reviewed studies and what types of ecosystem service- related information do they bear? Out of over 600 articles found through the Scopus search, 155 were deemed relevant for the review. The literature focuses on North-America and Europe. Most of the articles assessed the environmental impact of lower-value biomass uses. Climate change was assessed in over 90% of the studies, while issues related to ozone, eutrophication, human toxicity, resource depletion, acidification, and environmental toxicity were assessed in 40% to 60% of the studies. While the impact categories accounted for in the reviewed LCA studies bear information relevant to certain provisioning and regulating services, several ecosystem services (especially cultural ones) remain unaccounted for. The implications of our study are relevant for professionals working in the ecosystem services, circular bioeconomy, and/or LCA communities. (C) 2019 The Authors. Published by Elsevier B.V.Peer reviewe

    CARBON FOOTPRINT OF MUNICIPAL SOLID WASTE COLLECTION IN THE TREVISO AREA (ITALY)

    Get PDF
    Carbon Footprint (CF) is an environmental indicator used in Life Cycle Assessment (LCA) that allows measuring the total amount of CO2 emissions caused directly or indirectly by an activity or accumulated through the life cycle stages of a product (ISO 14064-14067). In this article CF was used to analyse and assess the environmental impacts of the resources used for the collection of municipal solid waste by the company Contarina S.p.A. Contarina oversees waste management for part of the Treviso province (Italy), serving about 260,000 appliances in 50 municipalities distributed in the territory. The presented case study assessed CF of year 2015 related the whole fleet involved in door-to-door collection of municipal solid waste without taking into account treatment processes. In addition, a future scenario, in which part of the current fleet is replaced by compressed natural gas engine (CNG) based vehicles, was assessed and compared to the current status. The CF was performed by adapting the SimaPro software from PRù, one of the most widely used LCA software since the nineties, by introducing fuel based analysis and creating CNG lorries. The analysis aimed at improving sustainability of Contarina’s services while fostering an informed development and testing of new technologies aimed at reducing its overall greenhouse gas emissions

    Ecological risk assessment for contaminated sites in Italy: Guidelines and path forward

    Get PDF
    Ecological risk assessment (ERA) is defined as an iterative process that evaluates the likelihood of adverse ecological effects resulting from exposure to one or more stressors. Although ERA is recognized as a valuable procedure to better address efforts and strategies for site remediation, in Europe a common framework for the implementation of ERA in the management of contaminated sites is lacking. In Italy, there are no legally binding provisions regulating the direct assessment of potential likelihood of ecological risks. In this context, the main objective of this article was to develop a guideline to facilitate ERA application in support of an effective and sustainable management of contaminated sites in Italy and to facilitate a multistakeholder dialogue. The work was based on a critical review of existing ERA guidelines in the international context, as well as other regulatory documents and technical approaches dealing with the evaluation of ecological effects of chemical contaminants in different environmental compartments. Approaches and tools available in these documents were then used to prepare a proposed guideline for the Italian context; the proposed ERA guideline is meant to represent a flexible but robust approach that can be useful in evaluating existing data (e.g., from past investigations) as well as in the planning of site-specific investigations. To facilitate the direct application of the ERA procedure, the guideline was prepared including several templates of summary tables, checklists, and examples. The proposed ERA guideline could facilitate the decision-making process for contaminated sites with ecological values, although its application would necessarily require, at least in the initial phase, testing of its suitability to the Italian context and setting-up of a close dialogue and collaboration with local authorities and other stakeholders. Integr Environ Assess Manag 2022;00:1-7. (c) 2022 SETA

    Contaminants of emerging concern in water and sediment of the Venice Lagoon, Italy

    Get PDF
    This study investigates for the first time the contamination of water and sediment of the Venice Lagoon by twenty Contaminants of Emerging Concern (CECs): three hormones, six pharmaceutical compounds (diclofenac and five antibiotics, three of which are macrolides), nine pesticides (methiocarb, oxadiazon, metaflumizone, triallate, and five neonicotinoids), one antioxidant (BHT), and one UV filter (EHMC). Water and sediment samples were collected in seven sites in four seasons, with the aim of investigating the occurrence, distribution, and possible emission sources of the selected CECs in the studied transitional environment. The most frequently detected contaminants in water were neonicotinoid insecticides (with a frequency of quantification of single contaminants ranging from 73% to 92%), and EHMC (detected in the 77% of samples), followed by BHT (42%), diclofenac (39%), and clarithromycin (35%). In sediment the highest quantification frequencies were those of BHT (54%), estrogens (ranging from 35% to 65%), and azithromycin (46%). Although this baseline study does not highlight seasonal or spatial trends, results suggested that two of the major emission sources of CECs in the Venice Lagoon could be tributary rivers from its drainage basin and treated wastewater, due to the limited removal rates of some CECs in WWTPs. These preliminary results call for further investigations to better map priority emission sources and improve the understanding of CECs environmental behavior, with the final aim of drawing up a site-specific Watch List of CECs for the Venice Lagoon and support the design of more comprehensive monitoring plans in the future

    Supporting Decision Making for Sustainable Nanotechnology

    Get PDF
    Understanding how stakeholders manage risks associated with nanomaterials is a key input to the design of strategies and tools to achieve safe and sustainable nanomanufacturing. The paper presents some results of a study aiming firstly to inform the development of a software decision support tool. Further, we seek also to understand existing tools used by stakeholders as a source of capabilities and potential adaptation into decision support framework and tools. Central research questions of this study are: How is collective decision-making on risk management and sustainable nanomaterials organised? Which aspects are taken into account in this collective decision-making? And what role can a decision support tool play in such decision-making? The paper analyses 13 responses to a questionnaire survey held among participants in a meeting in October 2013 and a series of 27 semi-structured telephone interviews conducted from January until April 2014 with decision-makers from mainly European industry and regulators involved in risk management and sustainable manufacturing of nanomaterials. Findings from the study on the social organisation of collective decision-making, aspects taken into account in decisions and potential role of decision support tools are presented.Understanding how stakeholders manage risks associated with nanomaterials is a key input to the design of strategies and tools to achieve safe and sustainable nanomanufacturing. The paper presents some results of a study aiming firstly to inform the development of a software decision support tool. Further, we seek also to understand existing tools used by stakeholders as a source of capabilities and potential adaptation into decision support framework and tools. Central research questions of this study are: How is collective decision-making on risk management and sustainable nanomaterials organised? Which aspects are taken into account in this collective decision-making? And what role can a decision support tool play in such decision-making? The paper analyses 13 responses to a questionnaire survey held among participants in a meeting in October 2013 and a series of 27 semi-structured telephone interviews conducted from January until April 2014 with decision-makers from mainly European industry and regulators involved in risk management and sustainable manufacturing of nanomaterials. Findings from the study on the social organisation of collective decision-making, aspects taken into account in decisions and potential role of decision support tools are presented

    Decision Support for International Agreements Regulating Nanomaterials

    Get PDF
    Nanomaterials are handled in global value chains for many different products, albeit not always recognisable as nanoproducts. The global market for nanomaterials faces an uncertain future, as the international dialogue on regulating nanomaterials is still ongoing and risk assessment data are being collected. At the same time, regulators and civil society organisations complain about a lack of transparency about the presence of nanomaterials on the market. In the project on Sustainable nanotechnologies (SUN, www.sun-fp7.eu), a Decision Support System (SUNDS) has been developed, primarily for confidential use by risk and sustainability managers inside a company or consortium. In this article, we formulate a scenario concerning a potential role for an open access decision support system in negotiations on international agreements regulating trade in nanomaterials. The scenario includes design rules for decision support systems as well as procedures for use of such a system in stakeholder dialogue and policy-making on governance of these and other emerging technologies. This article incorporates analysis of results of stakeholder engagement on nanomaterials as well as literature and internet sources suggested by these stakeholders

    An innovative index to incorporate transcriptomic data into weight of evidence approaches for environmental risk assessment

    Get PDF
    The sharp decrease in the cost of RNA-sequencing and the rapid improvement in computational analysis of eco-toxicogenomic data have brought new insights into the adverse effects of chemicals on aquatic organisms. Yet, transcriptomics is generally applied qualitatively in environmental risk assessments, hampering more effective exploitation of this evidence through multidisciplinary studies. In view of this limitation, a methodology is here presented to quantitatively elaborate transcriptional data in support to environmental risk assessment. The proposed methodology makes use of results from the application of Gene Set Enrichment Analysis to recent studies investigating the response of Mytilus galloprovincialis and Ruditapes philippinarum exposed to contaminants of emerging concern. The degree of changes in gene sets and the relevance of physiological reactions are integrated in the calculation of a hazard index. The outcome is then classified according to five hazard classes (from absent to severe), providing an evaluation of whole-transcriptome effects of chemical exposure. The application to experimental and simulated datasets proved that the method can effectively discriminate different levels of altered transcriptomic responses when compared to expert judgement (Spearman correlation coefficient of 0.96). A further application to data collected in two independent studies of Salmo trutta and Xenopus tropicalis exposed to contaminants confirmed the potential extension of the methodology to other aquatic species. This methodology can serve as a proof of concept for the integration of “genomic tools” in environmental risk assessment based on multidisciplinary investigations. To this end, the proposed transcriptomic hazard index can now be incorporated into quantitative Weight of Evidence approaches and weighed, with results from other types of analysis, to elucidate the role of chemicals in adverse ecological effects

    A multibiomarker approach in clams (Ruditapes philippinarum) for a toxicological evaluation of dredged sediments

    Get PDF
    The Lagoon of Venice is often dredged for channel maintenance. To avoid harmful consequences to the ecosystem, a proper disposal of bottom sediments requires a preliminary evaluation of its potential toxicity before excavation. Here we evaluated the effects of polluted sediments on clams (Ruditapes philippinarum) using a multibiomarker approach. Bivalves were exposed for 3 and 14 days to five sediment samples collected along a navigation canal between Venice historical centre and the industrial area of Porto Marghera. Immunological, antioxidant, detoxification, and neurotoxicity biomarkers were analysed in haemolymph, gill, and digestive gland. As a control, sediment collected far from pollution sources was used. Two experiments were performed to assess potential seasonal/gametogenic influence in clam sensitivity. A different response of clam biomarkers was observed during the two experiments and among sampling sites. Clams’ digestive gland resulted to be the most sensitive tissue analysed showing significant differences among sites in all biomarkers analysed. Greater differences were present due to seasonality rather than exposure. The concentrations of metals and organic pollutants increased from the city centre to the industrial area, highlighting the influence that industrial activities had on the lagoon ecosystem. However, bioaccumulation in clams did not follow the same clear pattern, suggesting low bioavailability of compounds due to relatively high organic matter content. Biomarkers modulation was mainly driven by metals, both present in sediments and bioaccumulated. In comparison, effects of organic pollutants on the biomarkers tested were negligible. Other sources of contamination not investigated (e.g. pesticides) were suggested by neurotoxicity biomarkers alteration
    • 

    corecore