5 research outputs found

    KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium

    No full text
    The flow-responsive transcription factor KLF2 is acquiring a leading role in the regulation of endothelial cell gene expression. A genome-wide microarray expression profiling is described employing lentivirus-mediated, 7-day overexpression of human KLF2 at levels observed under prolonged flow. KLF2 is not involved in lineage typing, as 42 endothelial-specific markers were unaffected. Rather, KLF2 generates a gene transcription profile (> 1000 genes) affecting key functional pathways such as cell migration, vasomotor function, inflammation, and hemostasis and induces a morphology change typical for shear exposure including stress fiber formation. Protein levels for thrombomodulin, endothelial nitric oxide synthase, and plasminogen activator inhibitor type-1 are altered to atheroprotective levels, even in the presence of the inflammatory cytokine TNF-alpha. KLF2 attenuates cell migration by affecting multiple genes including VEGFR2 and the potent antimigratory SEMA3F. The distribution of Weibel-Palade bodies in cultured cell populations is normalized at the single-cell level without interfering with their regulated, RalA-dependent release. In contrast, thrombin-induced release of Weibel-Palade bodies is significantly attenuated, consistent with the proposed role of VWF release at low-shear stress regions of the vasculature in atherosclerosis. These results establish that KLF2 acts as a central transcriptional switch point between the quiescent and activated states of the adult endothelial cel

    Endothelial KLF2 Links Local Arterial Shear Stress Levels to the Expression of Vascular Tone-Regulating Genes

    No full text
    Lung Krüppel-like factor (LKLF/KLF2) is an endothelial transcription factor that is crucially involved in murine vasculogenesis and is specifically regulated by flow in vitro. We now show a relation to local flow variations in the adult human vasculature: decreased LKLF expression was noted at the aorta bifurcations to the iliac and carotid arteries, coinciding with neointima formation. The direct involvement of shear stress in the in vivo expression of LKLF was determined independently by in situ hybridization and laser microbeam microdissection/reverse transcriptase-polymerase chain reaction in a murine carotid artery collar model, in which a 4- to 30-fold induction of LKLF occurred at the high-shear sites. Dissection of the biomechanics of LKLF regulation in vitro demonstrated that steady flow and pulsatile flow induced basal LKLF expression 15- and 36-fold at shear stresses greater than ∼5 dyne/cm(2), whereas cyclic stretch had no effect. Prolonged LKLF induction in the absence of flow changed the expression of angiotensin-converting enzyme, endothelin-1, adrenomedullin, and endothelial nitric oxide synthase to levels similar to those observed under prolonged flow. LKLF repression by siRNA suppressed the flow response of endothelin-1, adrenomedullin, and endothelial nitric oxide synthase (P < 0.05). Thus, we demonstrate that endothelial LKLF is regulated by flow in vivo and is a transcriptional regulator of several endothelial genes that control vascular tone in response to flow

    Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes

    No full text
    Lung Kruppel-like factor (LKLFIKLF2) is an endothelial transcription factor that is crucially involved in murine vasculogenesis and is specifically regulated by flow in vitro. We now show a relation to local flow variations in the adult human vasculature: decreased LKLF expression was noted at the aorta bifurcations to the iliac and carotid arteries, coinciding with neointima formation. The direct involvement of shear stress in the in vivo expression of LKLF was determined independently by in situ hybridization and laser microbeam microdissection/reverse transcriptase-polymerase chain reaction in a murine carotid artery collar model, in which a 4- to 30-fold induction of LKLF occurred at the high-shear sites. Dissection of the biomechanics of LKLF regulation in vitro demonstrated that steady flow and pulsatile flow induced basal LKLF expression 15- and 36-fold at shear stresses greater than similar to 5 dyne/cm(2), whereas cyclic stretch had no effect. Prolonged LKLF induction in the absence of flow changed the expression of angiotensin-converting enzyme, endothelin-1, adrenomedullin, and endothelial nitric oxide synthase to levels similar to those observed under prolonged flow. LKLF repression by siRNA suppressed the flow response of endothelin-1, adrenomedullin, and endothelial nitric oxide synthase (P <0.05). Thus, we demonstrate that endothelial LKLF is regulated by flow in vivo and is a transcriptional regulator of several endothelial genes that control vascular tone in response to flo
    corecore