1,028 research outputs found

    On the vanishing viscosity limit in a disk

    Full text link
    We say that the solution u to the Navier-Stokes equations converges to a solution v to the Euler equations in the vanishing viscosity limit if u converges to v in the energy norm uniformly over a finite time interval. Working specifically in the unit disk, we show that a necessary and sufficient condition for the vanishing viscosity limit to hold is the vanishing with the viscosity of the time-space average of the energy of u in a boundary layer of width proportional to the viscosity due to modes (eigenfunctions of the Stokes operator) whose frequencies in the radial or the tangential direction lie between L and M. Here, L must be of order less than 1/(viscosity) and M must be of order greater than 1/(viscosity)

    Quasiparticle Relaxation Across a Spin Gap in the Itinerant Antiferromagnet UNiGa5

    Full text link
    Ultrafast time-resolved photoinduced reflectivity is measured for the itinerant antiferromagnet UNiGa5_{5} (TNT_{N} \approx85 K) from room temperature to 10 K. The relaxation time τ\tau shows a sharp increase at TNT_{N} consistent with the opening of a spin gap. In addition, the temperature dependence of τ\tau below TNT_{N} is consistent with the opening of a spin gap leading to a quasiparticle recombination bottleneck as revealed by the Rothwarf-Taylor model. This contrasts with canonical heavy fermions such as CeCoIn5_{5} where the recombination bottleneck arises from the hybridization gap.Comment: 5 pages, 5 figure

    Prompt muon contribution to the flux underwater

    Get PDF
    We present high energy spectra and zenith-angle distributions of the atmospheric muons computed for the depths of the locations of the underwater neutrino telescopes. We compare the calculations with the data obtained in the Baikal and the AMANDA muon experiments. The prompt muon contribution to the muon flux underwater due to recent perturbative QCD-based models of the charm production is expected to be observable at depths of the large underwater neutrino telescopes. This appears to be probable even at rather shallow depths (1-2 km), provided that the energy threshold for muon detection is raised above 100\sim 100 TeV.Comment: 7 pages, RevTeX, 7 eps figures, final version to be published in Phys.Rev.D; a few changes made in the text and the figures, an approximation formula for muon spectra at the sea level, the muon zenith-angle distribution table data and references adde

    Non-Locality and Strong Coupling in the Heavy Fermion Superconductor CeCoIn5_{5}: A Penetration Depth Study

    Full text link
    We report measurements of the magnetic penetration depth λ\lambda in single crystals of CeCoIn5_{5} down to \sim0.14 K using a tunnel-diode based, self-inductive technique at 28 MHz. While the in-plane penetration depth tends to follow a power law, λ//T3/2\lambda_{//} \sim {\it T}^{3/2}, the data are better described as a crossover between linear ({\it T} \gg T{\it T}^\ast ) and quadratic ({\it T} T\ll {\it T}^\ast ) behavior, with T{\it T}^\ast the crossover temperature in the strong-coupling limit. The {\it c}-axis penetration depth λ\lambda_{\perp} is linear in {\it T}, providing evidence that CeCoIn5_{5} is a {\it d}-wave superconductor with line nodes along the {\it c}-axis. The different temperature dependences of λ//\lambda_{//} and λ\lambda_{\perp} rule out impurity effects as the source of T{\it T}^{\ast} .Comment: 4 pages, 3 figure

    Heavy nuclei at the end of the cosmic ray spectrum?

    Get PDF
    We provide an account of the possible acceleration of iron nuclei up to energies 300\sim300 EeV in the nearby, metally-rich starburst galaxy NGC 253. It is suggested that particles can escape from the nuclear region with energies of 1015\sim10^{15} eV and then could be reaccelerated at the terminal shock of the galactic superwind generated by the starburst, avoiding in this way the photodisintegration expected if the nuclei were accelerated in the central region of high photon density. We have also made estimates of the expected arrival spectrum, which displays a strong dependency with the energy cutoff at the source.Comment: Revised version, to appear in Physical Review
    corecore