611 research outputs found

    Universal linear relations between susceptibility and Tc in cuprates

    Full text link
    We developed an experimental method for measuring the intrinsic susceptibility \chi of powder of cuprate superconductors in the zero field limit using a DC-magnetometer. The method is tested with lead spheres. Using this method we determine \chi for a number of cuprate families as a function of doping. A universal linear (and not proportionality) relation between Tc and \chi is found. We suggest possible explanations for this phenomenon.Comment: Accepted for publication in PR

    Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects

    Full text link
    We report measurements of the irreversible magnetization M_i of a large number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them exhibit a maximum in M_i when the density of vortices equals the density of tracks, at temperatures above 40K. We show that the observation of these matching field effects is constrained to those crystals where the orientational and pinning energy dispersion of the CD system lies below a certain threshold. The amount of such dispersion is determined by the mass and energy of the irradiation ions, and by the crystal thickness. Time relaxation measurements show that the matching effects are associated with a reduction of the creep rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    The Effect of Splayed Pins on Vortex Creep and Critical Currents

    Full text link
    We study the effects of splayed columnar pins on the vortex motion using realistic London Langevin simulations. At low currents vortex creep is strongly suppressed, whereas the critical current j_c is enhanced only moderately. Splaying the pins generates an increasing energy barrier against vortex hopping, and leads to the forced entanglement of vortices, both of which suppress creep efficiently. On the other hand splaying enhances kink nucleation and introduces intersecting pins, which cut off the energy barriers. Thus the j_c enhancement is strongly parameter sensitive. We also characterize the angle dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure

    Stable ultrahigh-density magneto-optical recordings using introduced linear defects

    Full text link
    The stability of data bits in magnetic recording media at ultrahigh densities is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized spin domains, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures, are more stable against thermal self-erasure than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of \sim100 Gbit inch2^{-2} have been demonstrated using recent advances in the bit writing and reading techniques. But the roughness and mobility of the magnetic domain walls prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometers in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch2^{-2}.Comment: 5 pages, 4 figures, see also an article in TRN News at http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm

    Magnetocaloric Studies of the Peak Effect in Nb

    Full text link
    We report a magnetocaloric study of the peak effect and Bragg glass transition in a Nb single crystal. The thermomagnetic effects due to vortex flow into and out of the sample are measured. The magnetocaloric signature of the peak effect anomaly is identified. It is found that the peak effect disappears in magnetocaloric measurements at fields significantly higher than those reported in previous ac-susceptometry measurements. Investigation of the superconducting to normal transition reveals that the disappearance of the bulk peak effect is related to inhomogeneity broadening of the superconducting transition. The emerging picture also explains the concurrent disappearance of the peak effect and surface superconductivity, which was reported previously in the sample under investigation. Based on our findings we discuss the possibilities of multicriticality associated with the disappearance of the peak effect.Comment: 30 pages, 10 figure

    Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality

    Get PDF
    We present scanning tunneling spectroscopic and high-field thermodynamic studies of hole- and electron-doped (p- and n-type) cuprate superconductors. Our experimental results are consistent with the notion that the ground state of cuprates is in proximity to a quantum critical point (QCP) that separates a pure superconducting (SC) phase from a phase comprised of coexisting SC and a competing order, and the competing order is likely a spin-density wave (SDW). The effect of applied magnetic field, tunneling current, and disorder on the revelation of competing orders and on the low-energy excitations of the cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail: [email protected]

    Evidence for vortex staircases in the whole angular range due to competing correlated pinning mechanisms

    Full text link
    We analyze the angular dependence of the irreversible magnetization of YBa2_2Cu3_3O7_7 crystals with columnar defects inclined from the c-axis. At high fields a sharp maximum centered at the tracks' direction is observed. At low fields we identify a lock-in phase characterized by an angle-independent pinning strength and observe an angular shift of the peak towards the c-axis that originates in the material anisotropy. The interplay among columnar defects, twins and ab-planes generates a variety of staircase structures. We show that correlated pinning dominates for all field orientations.Comment: 9 figures, 4 figure

    Thermally activated Hall creep of flux lines from a columnar defect

    Full text link
    We analyse the thermally activated depinning of an elastic string (line tension ϵ\epsilon) governed by Hall dynamics from a columnar defect modelled as a cylindrical potential well of depth V0V_{0} for the case of a small external force F.F. An effective 1D field Hamiltonian is derived in order to describe the 2D string motion. At high temperatures the decay rate is proportional to F5/2T1/2exp[F0/FU(F)/T],F^{{5}/{2}}T^{-{1}/{2}} \exp{\left [{F_{0}}/{F}-{U(F)}/{T}\right ]}, with F0F_{0} a constant of order of the critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}} the activation energy. The results are applied to vortices pinned by columnar defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte

    Vortex Flow and Transverse Flux Screening at the Bose Glass Transition

    Get PDF
    We investigate the vortex phase diagram in untwinned YBaCuO single crystals with columnar defects. These randomly distributed defects, produced by heavy ion irradiation, are expected to induce a ``Bose Glass'' phase of localized vortices characterized by a vanishing resistance and a Meissner effect for magnetic fields transverse to the defect axis. We directly observe the transverse Meissner effect using an array of Hall probe magnetometers. As predicted, the Meissner state breaks down at temperatures Ts that decrease linearly with increasing transverse magnetic field. However, Ts falls well below the conventional melting temperature Tm determined by a vanishing resistivity, suggesting an intermediate regime where flux lines are effectively localized even when rotated off the columnar defects.Comment: 15 pages, 5 figure
    corecore