611 research outputs found
Universal linear relations between susceptibility and Tc in cuprates
We developed an experimental method for measuring the intrinsic
susceptibility \chi of powder of cuprate superconductors in the zero field
limit using a DC-magnetometer. The method is tested with lead spheres. Using
this method we determine \chi for a number of cuprate families as a function of
doping. A universal linear (and not proportionality) relation between Tc and
\chi is found. We suggest possible explanations for this phenomenon.Comment: Accepted for publication in PR
Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects
We report measurements of the irreversible magnetization M_i of a large
number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them
exhibit a maximum in M_i when the density of vortices equals the density of
tracks, at temperatures above 40K. We show that the observation of these
matching field effects is constrained to those crystals where the orientational
and pinning energy dispersion of the CD system lies below a certain threshold.
The amount of such dispersion is determined by the mass and energy of the
irradiation ions, and by the crystal thickness. Time relaxation measurements
show that the matching effects are associated with a reduction of the creep
rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
Stable ultrahigh-density magneto-optical recordings using introduced linear defects
The stability of data bits in magnetic recording media at ultrahigh densities
is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized
spin domains, which erase the stored information. Media that are magnetized
perpendicular to the plane of the film, such as ultrathin cobalt films or
multilayered structures, are more stable against thermal self-erasure than
conventional memory devices. In this context, magneto-optical memories seem
particularly promising for ultrahigh-density recording on portable disks, and
bit densities of 100 Gbit inch have been demonstrated using recent
advances in the bit writing and reading techniques. But the roughness and
mobility of the magnetic domain walls prevents closer packing of the magnetic
bits, and therefore presents a challenge to reaching even higher bit densities.
Here we report that the strain imposed by a linear defect in a magnetic thin
film can smooth rough domain walls over regions hundreds of micrometers in
size, and halt their motion. A scaling analysis of this process, based on the
generic physics of disorder-controlled elastic lines, points to a simple way by
which magnetic media might be prepared that can store data at densities in
excess of 1 Tbit inch.Comment: 5 pages, 4 figures, see also an article in TRN News at
http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm
Magnetocaloric Studies of the Peak Effect in Nb
We report a magnetocaloric study of the peak effect and Bragg glass
transition in a Nb single crystal. The thermomagnetic effects due to vortex
flow into and out of the sample are measured. The magnetocaloric signature of
the peak effect anomaly is identified. It is found that the peak effect
disappears in magnetocaloric measurements at fields significantly higher than
those reported in previous ac-susceptometry measurements. Investigation of the
superconducting to normal transition reveals that the disappearance of the bulk
peak effect is related to inhomogeneity broadening of the superconducting
transition. The emerging picture also explains the concurrent disappearance of
the peak effect and surface superconductivity, which was reported previously in
the sample under investigation. Based on our findings we discuss the
possibilities of multicriticality associated with the disappearance of the peak
effect.Comment: 30 pages, 10 figure
Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality
We present scanning tunneling spectroscopic and high-field thermodynamic
studies of hole- and electron-doped (p- and n-type) cuprate superconductors.
Our experimental results are consistent with the notion that the ground state
of cuprates is in proximity to a quantum critical point (QCP) that separates a
pure superconducting (SC) phase from a phase comprised of coexisting SC and a
competing order, and the competing order is likely a spin-density wave (SDW).
The effect of applied magnetic field, tunneling current, and disorder on the
revelation of competing orders and on the low-energy excitations of the
cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International
Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail:
[email protected]
Evidence for vortex staircases in the whole angular range due to competing correlated pinning mechanisms
We analyze the angular dependence of the irreversible magnetization of
YBaCuO crystals with columnar defects inclined from the c-axis. At
high fields a sharp maximum centered at the tracks' direction is observed. At
low fields we identify a lock-in phase characterized by an angle-independent
pinning strength and observe an angular shift of the peak towards the c-axis
that originates in the material anisotropy. The interplay among columnar
defects, twins and ab-planes generates a variety of staircase structures. We
show that correlated pinning dominates for all field orientations.Comment: 9 figures, 4 figure
Thermally activated Hall creep of flux lines from a columnar defect
We analyse the thermally activated depinning of an elastic string (line
tension ) governed by Hall dynamics from a columnar defect modelled
as a cylindrical potential well of depth for the case of a small
external force An effective 1D field Hamiltonian is derived in order to
describe the 2D string motion. At high temperatures the decay rate is
proportional to with a constant of order of the
critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}}
the activation energy. The results are applied to vortices pinned by columnar
defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte
Vortex Flow and Transverse Flux Screening at the Bose Glass Transition
We investigate the vortex phase diagram in untwinned YBaCuO single crystals
with columnar defects. These randomly distributed defects, produced by heavy
ion irradiation, are expected to induce a ``Bose Glass'' phase of localized
vortices characterized by a vanishing resistance and a Meissner effect for
magnetic fields transverse to the defect axis. We directly observe the
transverse Meissner effect using an array of Hall probe magnetometers. As
predicted, the Meissner state breaks down at temperatures Ts that decrease
linearly with increasing transverse magnetic field. However, Ts falls well
below the conventional melting temperature Tm determined by a vanishing
resistivity, suggesting an intermediate regime where flux lines are effectively
localized even when rotated off the columnar defects.Comment: 15 pages, 5 figure
- …
