3 research outputs found
Vasopressin acts as a synapse organizer in limbic regions by boosting PSD95 and GluA1 expression
Hypothalamic arginine vasopressin (AVP)-containing magnocellular neurosecretory neurons (AVPMNN) emit collaterals to synaptically innervate limbic regions influencing learning, motivational behaviour, and fear responses. Here, we characterize the dynamics of expression changes of two key determinants for synaptic strength, the postsynaptic density (PSD) proteins AMPAR subunit GluA1 and PSD scaffolding protein 95 (PSD95), in response to in vivo manipulations of AVPMNN neuronal activation state, or exposure to exogenous AVP ex vivo. Both long-term water deprivation in vivo, which powerfully upregulates AVPMNN metabolic activity, and exogenous AVP application ex vivo, in brain slices, significantly increased GluA1 and PSD95 expression as measured by western blotting, in brain regions reportedly receiving direct ascending innervations from AVPMNN (i.e., ventral hippocampus, amygdala and lateral habenula). By contrast, the visual cortex, a region not observed to receive AVPMNN projections, showed no such changes. Ex vivo application of V1a and V1b antagonists to ventral hippocampal slices ablated the AVP stimulated increase in postsynaptic protein expression measured by western blotting. Using a modified expansion microscopy technique, we were able to quantitatively assess the significant augmentation of PSD95 and GLUA1 densities in subcellular compartments in locus coeruleus tyrosine hydroxylase immunopositive fibres, adjacent to AVP axon terminals. Our data strongly suggest that the AVPMNN ascending system plays a role in the regulation of the excitability of targeted neuronal circuits through upregulation of key postsynaptic density proteins corresponding to excitatory synapses.Consejo Nacional de Ciencia y TecnologĂa,
MĂ©xico CONACYT; National Institute of Mental Health;
Universidad Nacional Aut onoma de MĂ©xico.http://wileyonlinelibrary.com/journal/jnehj2023Immunolog
Dynamic Modulation of Mouse Locus Coeruleus Neurons by Vasopressin 1a and 1b Receptors
The locus coeruleus (LC) is a brainstem nucleus distinguished by its supply of noradrenaline throughout the central nervous system. Apart from modulating a range of brain functions, such as arousal, cognition and the stress response, LC neuronal excitability also corresponds to the activity of various peripheral systems, such as pelvic viscera and the cardiovascular system. Neurochemically diverse inputs set the tone for LC neuronal activity, which in turn modulates these adaptive physiological and behavioral responses essential for survival. One such LC afferent system which is poorly understood contains the neurohormone arginine-vasopressin (AVP). Here we provide the first demonstration of the molecular and functional characteristics of the LC-AVP system, by characterizing its receptor-specific modulation of identified LC neurons and plasticity in response to stress. High resolution confocal microscopy revealed that immunoreactivity for the AVP receptor 1b (V1b) was located on plasma membranes of noradrenergic and non-noradrenergic LC neurons. In contrast, immunoreactivity for the V1a receptor was exclusively located on LC noradrenergic neurons. No specific signal, either at the mRNA or protein level, was detected for the V2 receptor in the LC. Clusters immunoreactive for V1a-b were located in proximity to profiles immunoreactive for GABAergic and glutamatergic synaptic marker proteins. AVP immunopositive varicosities were also located adjacent to labeling for such synaptic markers. Whole-cell patch clamp electrophysiology revealed that the pharmacological activation of V1b receptors significantly increased the spontaneous activity of 45% (9/20) of recorded noradrenergic neurons, with the remaining 55% (11/20) of cells exhibiting a significant decrease in their basal firing patterns. Blockade of V1a and V1b receptors on their own significantly altered LC neuronal excitability in a similar heterogeneous manner, demonstrating that endogenous AVP sets the basal LC neuronal firing rates. Finally, exposing animals to acute stress increased V1b, but not V1a receptor expression, whilst decreasing AVP immunoreactivity. This study reveals the AVP-V1a-b system as a considerable component of the LC molecular architecture and regulator of LC activity. Since AVP primarily functions as a regulator of homeostasis, the data suggest a novel pathway by modulating the functioning of a brain region that is integral to mediating adaptive responses