3 research outputs found

    Effect of fiber layer formation on mechanical and wear properties of natural fiber filled epoxy hybrid composites

    No full text
    Natural fiber-reinforced polymer matrix composites are gathering significance in future trend applications such as automotive, aerospace, sport, and other engineering applications due to their superior enhanced mechanical, wear, and thermal properties. Compared to synthetic fiber, natural fiber is low adhesive and flexural strength properties. The research aims to synthesize the epoxy hybrid composites by utilizing the silane (pH = 4) treated Kenaf (KF) and sisal fiber (SF) as layering by uni, bi, and multi-unidirectional via hand layup techniques. Thirteen composite samples have been prepared by three-layer formation adopted with different weight ratios of E/KF/SF such as 100E/0KF/0SF, 70E/30KF/0SF, 70E/0KF/30SF, 70E/20KF/10SF, and 70E/10KF/20SF respectively. The effect of layer formation on the tensile, flexural, and impact strength of composites is studied by ASTM D638, D790, and D256 standards. The unidirectional fiber layer formed (sample 5) 70E/10KF/20SF composite is found maximum tensile and flexural strength of 57.9 ± 1.2 MPa and 78.65 ± 1.8 MPa. This composite is subjected to wear studies by pin-on-disc wear apparatus configured with a hardened grey cast-iron plate under an applied load of 10, 20, 30, and 40 N at different sliding velocities of 0.1, 0.3, 0.5, and 0.7 m/s. The wear rate of the sample progressively increases with increasing load and sliding speed of the composite. The minimum wear rate of 0.012 mg/min (sample 4) is found on 7.6 N frictional force at 0.1 m/s sliding speed. Moreover, sample 4 at a high velocity of 0.7 m/s with a low load (10 N) shows a wear rate of 0.034 mg/min. The wear-worn surface is examined and found adhesive and abrasive wear on a high frictional force of 18.54 N at 0.7 m/s. The enhanced mechanical and wear behavior of sample 5 is recommended for automotive seat frame applications

    Inorganic Adsorption on Thermal Response and Wear Properties of Nanosilicon Nitride-Developed AA6061 Alloy Nanocomposite

    No full text
    Inorganic-based ceramic reinforcements are promising superior thermal behaviour and are lightweight and developed with aluminium alloy matrix for automobile applications. The AA6061 alloy nanocomposite containing 0 wt%, 4 wt%, 8 wt%, and 12 wt% of silicon nitride nanoparticles(50 nm) was synthesized by stir cast. The influences of thermal adsorption on silicon nitride (nano) additions, density, thermal response, hardness, and wear characteristics of AA6061 matrix nanocomposites are studied. Based on the rule of mixture, the density of nanocomposites is evaluated. The differential thermal and thermogravimetric analysis techniques are used to find the thermal response nanocomposite. The differential scanning calorimeter is used to find the heat flow between 400°C and 700°C. The micro Vickers hardness and wear characteristics of AA6061 nanocomposite were experimentally investigated by ASTM E384 and ASTM G99-05 standards. The adsorption of inorganic nanosilicon nitride particles (12 wt%) in AA6061 alloy showed a decreased mass loss with increased temperatures 0° to 700°C. The differential thermal analysis of nanocomposite reveals the transformation of solid-to-liquid phase under high temperature (528°C)

    Thermal Adsorption and Corrosion Characteristic Study of Copper Hybrid Nanocomposite Synthesized by Powder Metallurgy Route

    No full text
    Novel constitutions of ceramic bond the new opportunity of engineering materials via solid-state process attaining enhanced material characteristics to overcome the drawback of conventional materials used in aquatic applications. The copper-based materials have great potential to explore high corrosion resistance and good thermal performance in the above applications. The main objectives of this research are to develop and enhance the characteristics of the copper-based hybrid nanocomposite containing different weight percentages of alumina and graphite hard ceramics synthesized via solid-state processing (powder metallurgy). The presence of alumina nanoparticles with a good blending process has to improve the corrosion resistance, and graphite nanoparticles may limit the weight loss of the sample during potentiodynamic corrosion analysis. The developed composite’s micro Vickers hardness is evaluated by the E384 standard on ASTM value of 69 Hv and is noted by increasing the weight percentages of alumina nanoparticles. The conduction temperature of actual sintering anticipates the thermogravimetric analysis of developed composite samples varied from 400°C to 750°C. The thermogravimetric graph illustration curve of the tested sample found double-step decomposition identified between 427°C and 456°C. The potentiodynamic analyzer is used to evaluate the corrosion behaviour of the sample and the weight loss equation adopted for finding the theoretical weight loss of the composite
    corecore