7 research outputs found

    Electron Paramagnetic Resonance Imaging and Probes

    Get PDF
    EPR imaging at low frequency is an important method to measure in vivo physiology. Because native paramagnetic species exist at low concentrations in living systems, exogenous paramagnetic species are needed for in vivo EPR. Selection of the appropriate EPR probe allows the experimenter to obtain information about the environment of the imaged probe and its spatial distribution. Relaxation times for several nitroxide radicals were studied with the aim of understanding the relaxation mechanisms, which provides criteria for design of suitable in vivo imaging probes. Amino-substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X-band for the protonated and deprotonated forms of two amino-substituted triaryl methyl radicals. T1 exhibits little dependence on protonation, which makes it useful for measuring O2 concentration. Values of T2 vary substantially with pH, reflecting a range of dynamic processes, and thus T2 is a potentially useful monitor of pH. The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH-. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz when measured in solvent with normal isotope abundance. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time and is attributed to hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones. Rapid scan imaging was shown, for the same data acquisition time, to give higher signal-to-noise than continuous wave for the nitroxide probe 15N-perdeuterated tempone. The narrow spectral widths for the amino-substituted triaryl methyl radicals facilitate spectral-spatial EPR imaging. A phantom was imaged using rapid scan to test the feasibility of mapping the pH and to test a new algorithm for full spectrum imaging. Finally, a spin coherence phenomenon was observed at X-band in semiquinone rapid scan spectra, which arises from closely-spaced nuclear hyperfine lines

    Frequency Dependence of Electron Spin–lattice Relaxation for Semiquinones in Alcohol Solutions

    No full text
    The spin–lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH−. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones

    Electron Spin Relaxation Times and Rapid Scan EPR Imaging of pH-sensitive Amino-substituted Trityl Radicals

    No full text
    Carboxy‐substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino‐substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X‐band for the protonated and deprotonated forms of two amino‐substituted triarylmethyl radicals. Comparison with relaxation times for carboxy‐substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino‐substituted triarylmethyl radicals facilitate spectral‐spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image

    Rapid-scan Coherence Signals in X-band EPR Spectra of Semiquinones with Small Hyperfine Splittings

    No full text
    Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH = 46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH = 59 mG for 18 protons

    (–)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress

    No full text
    Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS). We have identified (–)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy. We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III) or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 ΌM of EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial function were assessed. EPICAT at 1.0 ΌM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 ΌM, EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased complex I expression in AA-treated cells, and 1.0 ΌM EPICAT significantly decreased mitochondrial complex V expression in HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis

    Improved Sensitivity for Imaging Spin Trapped Hydroxyl Radical at 250 MHz

    No full text
    Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. (i) Spin trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. (ii) The signal-to-noise of rapid scan EPR is substantially higher than for conventional continuous wave EPR. (iii) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin-adduct without requiring the very wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 ÎŒM BMPO-OH

    Imaging Disulfide Dinitroxides at 250 MHz to Monitor Thiol Redox Status

    No full text
    Measurement of thiol–disulfide redox status is crucial for characterization of tumor physiology. The electron paramagnetic resonance (EPR) spectra of disulfide-linked dinitroxides are readily distinguished from those of the corresponding monoradicals that are formed by cleavage of the disulfide linkage by free thiols. EPR spectra can thus be used to monitor the rate of cleavage and the thiol redox status. EPR spectra of 1H,14N- and 2H,15N-disulfide dinitroxides and the corresponding monoradicals resulting from cleavage by glutathione have been characterized at 250 MHz, 1.04 GHz, and 9 GHz and imaged by rapid-scan EPR at 250 MHz
    corecore