13 research outputs found

    Fatty Left Ventricular Cardiomyopathy: An Under-Diagnosed Disease

    No full text

    Pulmonary vein morphology by free-breathing whole heart magnetic resonance imaging at 3 Tesla versus breathhold multi-detector computed tomography.

    No full text
    International audiencePURPOSE: To compare pulmonary vein and left atrial anatomy using three-dimensional free-breathing whole-heart magnetic resonance imaging (MR) at 3 Tesla (T) and multi-detector computed tomography (MDCT). MATERIALS AND METHODS: Thirty-three subjects (19 male, age 49 ± 12 years) underwent free-breathing 3T MR and contrast-enhanced MDCT during inspiratory breath hold. Pulmonary vein parameters (ostial areas, diameters, angles) were measured. RESULTS: All pulmonary veins and anomalies were identified by 3T MR and by MDCT. The right-sided pulmonary veins were directed more posteriorly, the right superior pulmonary vein more inferiorly, and the right inferior pulmonary vein more superiorly by 3T MR when compared with MDCT. The cross-sectional area, perimeters and minimum diameters of right-sided pulmonary vein ostia were significantly larger by MR, as were the maximum diameters of right and left inferior pulmonary veins. There were no significant differences between techniques in distance to first pulmonary vein branch. CONCLUSION: Pulmonary vein measurements demonstrated significant differences in angulations and dimensions when 3T MR is compared with MDCT. These differences likely represent hemodynamic and respiratory variation during free-breathing with MR versus breath-holding with MDCT. MR imaging at 3T during free-breathing offers an alternate method to define pulmonary vein and left atrial anatomy without exposure to radiation

    Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture.

    No full text
    International audienceFibrous cap thickness is often considered as diagnostic of the degree of plaque instability. Necrotic core area (Core(area)) and the arterial remodeling index (Remod(index)), on the other hand, are difficult to use as clinical morphological indexes: literature data show a wide dispersion of Core(area) thresholds above which plaque becomes unstable. Although histopathology shows a strong correlation between Core(area) and Remod(index), it remains unclear how these interact and affect peak cap stress (Cap(stress)), a known predictor of rupture. The aim of this study was to investigate the change in plaque vulnerability as a function of necrotic core size and plaque morphology. Cap(stress) value was calculated on 5,500 idealized atherosclerotic vessel models that had the original feature of mimicking the positive arterial remodeling process described by Glagov. Twenty-four nonruptured plaques acquired by intravascular ultrasound on patients were used to test the performance of the associated idealized morphological models. Taking advantage of the extensive simulations, we investigated the effects of anatomical plaque features on Cap(stress). It was found that: 1) at the early stages of positive remodeling, lesions were more prone to rupture, which could explain the progression and growth of clinically silent plaques and 2) in addition to cap thickness, necrotic core thickness, rather than area, was critical in determining plaque stability. This study demonstrates that plaque instability is to be viewed not as a consequence of fibrous cap thickness alone but rather as a combination of cap thickness, necrotic core thickness, and the arterial remodeling index
    corecore