2 research outputs found

    Capacity Estimation of Solar Farms Using Deep Learning on High-Resolution Satellite Imagery

    Get PDF
    Global solar photovoltaic capacity has consistently doubled every 18 months over the last two decades, going from 0.3 GW in 2000 to 643 GW in 2019, and is forecast to reach 4240 GW by 2040. However, these numbers are uncertain, and virtually all reporting on deployments lacks a unified source of either information or validation. In this paper, we propose, optimize, and validate a deep learning framework to detect and map solar farms using a state-of-the-art semantic segmentation convolutional neural network applied to satellite imagery. As a final step in the pipeline, we propose a model to estimate the energy generation capacity of the detected solar energy facilities. Objectively, the deep learning model achieved highly competitive performance indicators, including a mean accuracy of 96.87%, and a Jaccard Index (intersection over union of classified pixels) score of 95.5%. Subjectively, it was found to detect spaces between panels producing a segmentation output at a sub-farm level that was better than human labeling. Finally, the detected areas and predicted generation capacities were validated against publicly available data to within an average error of 4.5% Deep learning applied specifically for the detection and mapping of solar farms is an active area of research, and this deep learning capacity evaluation pipeline is one of the first of its kind. We also share an original dataset of overhead solar farm satellite imagery comprising 23,000 images (256 × 256 pixels each), and the corresponding labels upon which the machine learning model was trained

    Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020

    No full text
    Background: Although some studies have explored the effects of responses to COVID-19 on mortality, there are limited data on their effects on more immediate health risk factors and the trends of chronic diseases. Objective: To explore the prevalence of some behavioral health risk factors, intermediate risk factors, and chronic diseases at different timepoints during 2020 using the data available from a currently used surveillance system in Saudi Arabia. Methods: This study undertook a secondary analysis of data from the Sharik Health Indicators Surveillance System (SHISS). The SHISS employs short cross-sectional phone interviews, conducted in all 13 administrative regions of Saudi Arabia on a quarterly basis. Each interview lasts approximately 4 min and is conducted by a trained data collector. The SHISS collects demographic data, as well as data on the major behavioral and intermediate chronic disease risk factors and the major chronic diseases, including diabetes, heart disease, stroke, cancer, and chronic respiratory diseases. Results: Of the 44,782 potential participants contacted in 2020, 30,134 completed the interview, with a response rate of 67.29%. Out of the total participants, 51.2% were female. The mean age was 36.5. The behavioral risk factors in this period exhibited significant changes compared to those in the first quarter (Q1) of 2020, when there were no significant restrictions on daily activities. These significant changes are related to reductions in fruit and vegetable intake (adjusted odds ratio (AOR), 0.23) and physical activity (AOR, 0.483), and a significant increase in e-cigarette use (AOR 1.531). In terms of the intermediate risk factors observed in the SHISS, significant increases in hypercholesterolemia (AOR, 1.225) and hypertension (AOR, 1.190) were observed. Finally, heart disease (AOR, 1.279) and diabetes (AOR, 1.138) displayed significant increases compared to Q1. Conclusions: This study shows some evidence of the impact of responses to COVID-19 on the health of the population in Saudi Arabia. Significant reductions in fruit and vegetable intake and physical activity, and significant increases in e-cigarette use, hypertension, and hypercholesterolemia may increase the burden of chronic diseases in Saudi Arabia in the near future. Thus, continuous monitoring of the health risk factors within the population, and early interventions, are recommended to prevent future increases in chronic diseases
    corecore