121 research outputs found

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population

    The CMS Statistical Analysis and Combination Tool: COMBINE

    No full text
    International audienceThis paper describes the COMBINE software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run COMBINE and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of COMBINE. However, the online documentation referenced within this paper provides an up-to-date and complete user guide

    Dark sector searches with the CMS experiment

    No full text
    Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report.Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report

    Observation of double J/ψ\psi meson production in pPb collisions at sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe first observation of the concurrent production of two J/ψ\psi mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead (pPb) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of 174.6 nb1^{-1}. The two J/ψ\psi mesons are reconstructed in their μ+μ\mu^+\mu^- decay channels with transverse momenta pTp_\mathrm{T}>\gt 6.5 GeV and rapidity y\lvert y \rvert<\lt 2.4. Events where one of the J/ψ\psi mesons is reconstructed in the dielectron channel are also considered in the search. The pPb \to J/ψ\psiJ/ψ\psi+X process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is σ\sigma(pPb\to J/ψ\psiJ/ψ\psi+X)= 22.0 ±\pm 8.9 (stat) ±\pm 1.5 (syst) nb. A fit of the data to the expected rapidity separation for pairs of J/ψ\psi mesons produced in single (SPS) and double (DPS) parton scatterings yields σSPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to\mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{SPS} = 16.5 ±\pm 10.8 (stat) ±\pm 0.1 (syst) nb and σDPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to \mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{DPS} = 5.4 ±\pm 6.2 (stat) ±\pm 0.4 (syst) nb, respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of σeff\sigma_\text{eff}>\gt 1.0 mb at 95% confidence level

    Constraints on the Higgs boson self-coupling from the combination of single and double Higgs boson production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe Higgs boson (H) trilinear self-coupling, λ3\lambda_3, is constrained via its measured properties and limits on the HH pair production using the proton-proton collision data collected by the CMS experiment at s\sqrt{s} = 13 TeV. The combination of event categories enriched in single-H and HH events is used to measure κλ\kappa_\lambda, defined as the value of λ3\lambda_3 normalized to its standard model prediction, while simultaneously constraining the Higgs boson couplings to fermions and vector bosons. Values of κλ\kappa_\lambda outside the interval -1.2 <\ltκλ\kappa_\lambda<\lt 7.5 are excluded at 2σ\sigma confidence level, which is compatible with the expected range of -2.0 <\ltκλ\kappa_\lambda<\lt 7.7 under the assumption that all other Higgs boson couplings are equal to their standard model predicted values. Relaxing the assumption on the Higgs couplings to fermions and vector bosons the observed (expected) κλ\kappa_\lambda interval is constrained to be within -1.4 <\ltκλ\kappa_\lambda<\lt 7.8 (-2.3 <\ltκλ\kappa_\lambda<\lt 7.8) at 2σ\sigma confidence level

    Search for bottom quark associated production of the standard model Higgs boson in final states with leptons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThis Letter presents the first search for bottom quark associated production of the standard model Higgs boson, in final states with leptons. Higgs boson decays to pairs of tau leptons and pairs of leptonically decaying W bosons are considered. The search is performed using data collected from 2016 to 2018 by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1{-1}. Upper limits at the 95% confidence level are placed on the signal strength for Higgs boson production in association with bottom quarks; the observed (expected) upper limit is 3.7 (6.1) times the standard model prediction

    Dark sector searches with the CMS experiment

    No full text
    International audienceAstrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report

    Study of WH production through vector boson scattering and extraction of the relative sign of the W and Z couplings to the Higgs boson in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search for the production of a W boson and a Higgs boson through vector boson scattering (VBS) is presented, using CMS data from proton-proton collisions at s\sqrt{s} = 13 TeV collected from 2016 to 2018. The integrated luminosity of the data sample is 138 fb1^{-1}. Selected events must be consistent with the presence of two jets originating from VBS, the leptonic decay of the W boson to an electron or muon, and a Higgs boson decaying into a pair of b quarks, reconstructed as either a single merged jet or two resolved jets. A measurement of the process as predicted by the standard model (SM) is performed alongside a study of beyond-the-SM (BSM) scenarios. The SM analysis sets an observed (expected) 95% confidence level upper limit of 14.3 (9.0) on the ratio of the measured VBS WH cross section to that expected by the SM. The BSM analysis, conducted within the so-called κ\kappa framework, excludes all scenarios with λWZ\lambda_\mathrm{WZ} <\lt 0 that are consistent with current measurements, where λWZ\lambda_\mathrm{WZ} = κW/κZ\kappa_\mathrm{W}/\kappa_\mathrm{Z} and κW\kappa_\mathrm{W} and κZ\kappa_\mathrm{Z} are the HWW and HZZ coupling modifiers, respectively. The signficance of the exclusion is beyond 5 standard deviations, and it is consistent with the SM expectation of λWZ\lambda_\mathrm{WZ} = 1

    Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at s\sqrt{s} = 13 TeV at the CMS experiment

    No full text
    International audienceThe LHC has provided an unprecedented amount of proton-proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015-2018 at a center-of-mass energy of 13 TeV help to test the standard model at the highest precision ever and potentially discover new physics. An interesting opportunity is presented by the possibility of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. They may explain the appearance of three generations of leptons and quarks, the mass hierarchy across the generations, and the nonzero neutrino masses. In this report, the status of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment is discussed. A complete overview of final states is provided together with their complementarity and partial combination. The discovery potential for several of these searches at the High-Luminosity LHC is also discussed
    corecore