67 research outputs found

    A Nested Sensor Array Focusing on Near Field Targets

    Get PDF
    A nested virtual array subband beamforming system is proposed for applications where broadband signal targets are located within the near field of the array. Subband multirate processing and near field beamforming techniques are used jointly for the nested array to improve the performances and reduce the computational complexity. A new noise model, namely the broadband near field spherically isotropic noise model, is also proposed for the optimization design of near field beamformers. It is shown that near field beamforming is essential for better distance discrimination of near field targets, reduced beampattern variations for broadband signals, and stronger reverberation suppression

    Robust Near-Field Adaptive Beamforming with Distance Discrimination

    Get PDF
    This paper proposes a robust near-field adaptive beamformer for microphone array applications in small rooms. Robustness against location errors is crucial for near-field adaptive beamforming due to the difficulty in estimating near-field signal locations especially the radial distances. A near-field regionally constrained adaptive beamformer is proposed to design a set of linear constraints by filtering on a low rank subspace of the near-field signal over a spatial region and frequency band such that the beamformer response over the designed spatial-temporal region can be accurately controlled by a small number of linear constraint vectors. The proposed constraint design method is a systematic approach which guarantees real arithmetic implementation and direct time domain algorithms for broadband beamforming. It improves the robustness against large errors in distance and directions of arrival, and achieves good distance discrimination simultaneously. We show with a nine-element uniform linear array that the proposed near-field adaptive beamformer is robust against distance errors as large as Ā±32% of the presumed radial distance and angle errors up to Ā±20ā°. It can suppress a far field interfering signal with the same angle of incidence as a near-field target by more than 20 dB with no loss of the array gain at the near-field target. The significant distance discrimination of the proposed near-field beamformer also helps to improve the dereverberation gain and reduce the desired signal cancellation in reverberant environments

    A Microphone Array System for Multimedia Applications with Near-Field Signal Targets

    Get PDF
    A microphone array beamforming system is proposed for multimedia communication applications using four sets of small planar arrays mounted on a computer monitor. A new virtual array approach is employed such that the original signals received by the array elements are weighted and delayed to synthesize a large, nonuniformly spaced, harmonically nested virtual array covering the frequency band [50, 7000] Hz of the wideband telephony. Subband multirate processing and near-field beamforming techniques are then used jointly by the nested virtual array to improve the performances in reverberant environments. A new beamforming algorithm is also proposed using a broadband near-field spherically isotropic noise model for array optimization. The near-field noise model assumes a large number of broadband random noises uniformly distributed over a sphere with a finite radius in contrast to the conventional far-field isotropic noise model which has an infinite radius. The radius of the noise model, thus, adds a design parameter in addition to its power for tradeoffs between performance and robustness. It is shown that the near-field beamformers designed by the new algorithm can achieve more than 8-dB reverberation suppression while maintaining sufficient robustness against background noises and signal location errors. Computer simulations and real room experiments also show that the proposed array beamforming system reduces beampattern variations for broadband signals, obtains strong noise and reverberation suppression, and improves the sound quality for near-field targets

    Robust Near-Field Adaptive Beamforming With Distance Discrimination

    Full text link

    Analysis and mitigation of the narrowband interference impact on IR-UWB communication systems

    Get PDF
    The impact of narrowband interference signals on impulse radio ultrawideband (UWB) communication systems has been investigated. A closed form expression for the bit error rate performance of UWB communication system in a Log-normal flat fading channel under such impact is evaluated. The actual UWB channel model is known as a multipath fading channel; however flat fading channel model can be considered with some of the UWB wireless applications such as UWB wireless sensor networks which are characterized by size and energy constraints. Thus, a simple and low-cost one-finger Rake receiver can be used with such wireless systems. It was proven that UWB systems unavoidably suffer from the interference caused by the coexisting systems due to the restraint on their transmission power levels. To this end, we propose an interference canceller scheme which is capable of suppressing the impact of such interference and enhancing the performance of UWB communication systems. The interference canceller scheme performance is also investigated in various scenarios of operation such as the presence of multiple narrowband interference signals, symbol timing error, and a comparison with a notch filter-based case. Copyrigh
    • ā€¦
    corecore