26 research outputs found

    Optimal Adaptive Super-Twisting Sliding-Mode Control Using Online Actor-Critic Neural Networks for Permanent-Magnet Synchronous Motor Drives

    No full text
    In this paper, a novel optimal adaptive-gains super-twisting sliding-mode control (OAGSTSMC) using actor-critic approach is proposed for a high-speed permanent-magnet synchronous motor (PMSM) drive system. First, the super-twisting sliding-mode controller (STSMC) is adopted for reducing the chattering phenomenon and stabilizing the PMSM drive system. However, the control performance may be destroyed due external disturbances and parameter variations of the drive system. In addition, the conservative selection of the STSMC gains may affect the control performance. Therefore, for enhancing the standard super-twisting approach performance via avoiding the constraints on knowing the disturbances as well as uncertainties upper bounds, and to achieve the drive system robustness, the direct heuristic dynamic programming (HDP) is utilized for optimal tuning of STSMC gains. Consequently, an online actor-critic algorithm with HDP is designed for facilitating the online solution of the Hamilton-Jacobi-Bellman (HJB) equation via a critic neural network while pursuing an optimal control via an actor neural network at the same time. Furthermore, based on Lyapunov approach, the stability of the closed-loop control system is assured. A real-time implementation is performed for verifying the proposed OAGSTSMC efficacy. The experimental results endorse that the proposed OAGSTSMC control approach achieves the PMSM superior dynamic performance regardless of unknown uncertainties as well as exterior disturbances

    Modified Primary Flux Linkage for Enhancing the Linear Induction Motor Performance Based on Sliding Mode Control and Model Predictive Flux Control

    No full text
    This paper proposes a modified primary flux linkage and an improved weighting less model predictive control for linear induction motors (LIMs) to enhance the drive system in terms of linear speed response, wide speed range, efficiency, and computation time. Sliding mode controller is presented in this work to get quick response instead of the use of the PI controller. A weighting less model predictive flux control (MPFC) is employed to eliminate the weighting factor and reduce the computation time. Furthermore, the optimum value of the primary flux linkage is calculated to guarantee higher efficiency under the operation of maximum thrust per ampere, loss minimization control and wider speed range in the field weakening region. The FCS-MPFC uses only the primary flux in the cost function independent on the weighting factor. Moreover, simplified calculation process can be executed greatly in the αβ\alpha \beta -coordinates without transformation matrix, where the end-effect is fully taken into consideration. In comparison with the PI controller under different conditions, the proposed control method can achieve faster dynamics with lower thrust ripple, computation time, and so on. Comprehensive simulation and experimental results based on one prototype with 3 kW linear induction machine have verified the advantages of the proposed strategy in this work

    Dual-Time-Scale Sliding Mode Control for Surface-Mounted Permanent Magnet Synchronous Motors

    No full text
    The permanent magnet synchronous motors (PMSMs) as the completely symmetrical three-phase machines, which are usually driven by symmetrical voltage signals. Unfortunately, a PMSM system usually suffers from the different lumped disturbances, such as internal parametric perturbations and external load torques, the speed regulation problem should be addressed within the different operation situations. Characterizing by the current variation speed of the motor winding is much faster than that of the mechanical dynamic velocity, a dual-time-scale sliding mode control (SMC) method for the surface-mounted PMSMs is proposed in this paper. Firstly, the mathematical model of PMSMs is established in the two-phase synchronous rotating orthogonal reference coordinate system, and the slow and fast variation subsystems are obtained based on the quasi-steady-state theory. Secondly, a tracking differentiator (TD)-based and exponential reaching law-based sliding mode controllers are individually designed within dual-time-scale, respectively. As a result, the eventual SMC strategy is presented, and the stability of control system is analyzed by applying the Lyapunov stability theory. The main contribution of this study is to present an alternative control framework for the PMSMs servo system, where the dual-time-scale characteristic is involved, and thus a non-cascade control structure that different from the traditional drive strategy is proposed in the motor community. Finally, the model of whole system is built and carried out on the simulation platform. Research results demonstrate that the presented servo control system can accurately track the reference angle velocity signal, while the strong robustness and fast response performance are guaranteed in the presence of external disturbances. In addition, the three-phase current transient response values are completely symmetrical with the rapid adjustment characteristic

    Dual-Time-Scale Sliding Mode Control for Surface-Mounted Permanent Magnet Synchronous Motors

    No full text
    The permanent magnet synchronous motors (PMSMs) as the completely symmetrical three-phase machines, which are usually driven by symmetrical voltage signals. Unfortunately, a PMSM system usually suffers from the different lumped disturbances, such as internal parametric perturbations and external load torques, the speed regulation problem should be addressed within the different operation situations. Characterizing by the current variation speed of the motor winding is much faster than that of the mechanical dynamic velocity, a dual-time-scale sliding mode control (SMC) method for the surface-mounted PMSMs is proposed in this paper. Firstly, the mathematical model of PMSMs is established in the two-phase synchronous rotating orthogonal reference coordinate system, and the slow and fast variation subsystems are obtained based on the quasi-steady-state theory. Secondly, a tracking differentiator (TD)-based and exponential reaching law-based sliding mode controllers are individually designed within dual-time-scale, respectively. As a result, the eventual SMC strategy is presented, and the stability of control system is analyzed by applying the Lyapunov stability theory. The main contribution of this study is to present an alternative control framework for the PMSMs servo system, where the dual-time-scale characteristic is involved, and thus a non-cascade control structure that different from the traditional drive strategy is proposed in the motor community. Finally, the model of whole system is built and carried out on the simulation platform. Research results demonstrate that the presented servo control system can accurately track the reference angle velocity signal, while the strong robustness and fast response performance are guaranteed in the presence of external disturbances. In addition, the three-phase current transient response values are completely symmetrical with the rapid adjustment characteristic

    Barrier Function-Based Nonsingular Finite-Time Tracker for Quadrotor UAVs Subject to Uncertainties and Input Constraints

    No full text
    This study proposes an adaptive barrier functions-based non-singular terminal sliding mode control approach for the trajectory tracking of a quadrotor unmanned aerial vehicle subject to bounded uncertainties and input constraints. First, the state-space equations of the six degrees-of-freedom quadrotor system is introduced in the presence of bounded uncertainty and constrained input. Then, a compensation system is designed with the aim of removing the constrained input and leading to high performance. Afterwards, a linear switching surface is defined using the tracking error and virtual control input to guarantee the convergence of the tracking error in the presence of parametric uncertainties and input saturation. Later, a non-singular terminal sliding surface is proposed for fast convergence of the linear switching surface. To eliminate the need for approximating the upper bounds of uncertainties and ensure the fast convergence of the non-singular terminal sliding surface to a pre-specified neighborhood of the origin, we considered an adaptive barrier function scheme. The fast convergence rate of the proposed approach is verified via the Lyapunov stability theory. The accuracy and performance of the proposed approach is assessed using MATLAB/Simulink simulations and robustness analysis using the random number noise
    corecore