3 research outputs found

    Comprehensive mechanism of gene silencing and its role in plant growth and development

    Get PDF
    Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5′ untranslated region (5′UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production

    Heat Stress-Mediated constraints in Maize (Zea mays) production: Challenges and solutions

    Get PDF
    An increase in temperature and extreme heat stress is responsible for the global reduction in maize yield. Heat stress affects the integrity of the plasma membrane functioning of mitochondria and chloroplast, which further results in the over-accumulation of reactive oxygen species. The activation of a signal cascade subsequently induces the transcription of heat shock proteins. The denaturation and accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death. Therefore, developing maize cultivars with significant heat tolerance is urgently required. Despite the explored molecular mechanism underlying heat stress response in some plant species, the precise genetic engineering of maize is required to develop high heat-tolerant varieties. Several agronomic management practices, such as soil and nutrient management, plantation rate, timing, crop rotation, and irrigation, are beneficial along with the advanced molecular strategies to counter the elevated heat stress experienced by maize. This review summarizes heat stress sensing, induction of signaling cascade, symptoms, heat stress-related genes, the molecular feature of maize response, and approaches used in developing heat-tolerant maize varieties

    SSR markers in revealing extent of genetic diversity and phylogenetic relationships among chickpea core collection accessions for Western Himalayas

    No full text
    Background The exploration of genetic diversity is the key source of germplasm conservation and potential to broaden its genetic base. The globally growing demand for chickpea suggests superior/climate-resilient varieties, which in turn necessitates the germplasm characterization to unravel underlying genetic variation. Methodology and results A chickpea core collection comprising of diverse 192 accessions which include cultivated Cicer arietinum, and wild C. reticulatum, C. echinospermum, and C. microphyllum species were investigated to analyze their genetic diversity and relationship, by assaying 33 unlinked simple sequence repeat (SSR) markers. The results amplified a total of 323 alleles (Na), ranging from 2 to 8 with an average of 4.25 alleles per locus. Expected heterozygosity (He) differed from 0.46 to 0.86 with an average of 0.68. Polymorphic information content (PIC) ranged from 0.73 to 0.98 with an average of 0.89. Analysis of molecular variance (AMOVA) showed that most of the variation was among individuals (87%). Cluster analysis resulted in the formation of four distinct clusters. Cluster I represented all cultivated and clusters II, III, and IV comprised a heterogeneous group of cultivated and wild chickpea accessions. Conclusion We report considerable diversity and greater resolving power of SSR markers for assessing variability and interrelationship among the chickpea accessions. The chickpea core is expected to be an efficient resource for breeders for broadening the chickpea genetic base and could be useful for selective breeding of desirable traits and in the identification of target genes for genomics-assisted breeding
    corecore