22 research outputs found
Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice
<p>Abstract</p> <p>Background</p> <p>Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV) type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features.</p> <p>Results</p> <p>We designed recombinant adeno-associated virus (rAAV) vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (E<sub>ON </sub>and E<sub>OFF</sub>) into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7). Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for <it>in vivo </it>studies. To validate the functionality of delivery and regulation we performed <it>in vivo </it>studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression.</p> <p>Conclusion</p> <p>Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.</p
Vitamin H-regulated transgene expression in mammalian cells
Although adjustable transgene expression systems are considered essential for future therapeutic and biopharmaceutical manufacturing applications, the currently available transcription control modalities all require side-effect-prone inducers such as immunosupressants, hormones and antibiotics for fine-tuning. We have designed a novel mammalian transcription-control system, which is reversibly fine-tuned by non-toxic vitamin H (also referred to as biotin). Ligation of vitamin H, by engineered Escherichia coli biotin ligase (BirA), to a synthetic biotinylation signal fused to the tetracycline-dependent transactivator (tTA), enables heterodimerization of tTA to a streptavidin-linked transrepressor domain (KRAB), thereby abolishing tTA-mediated transactivation of specific target promoters. As heterodimerization of tTA to KRAB is ultimately conditional upon the presence of vitamin H, the system is vitamin H responsive. Transgenic Chinese hamster ovary cells, engineered for vitamin H-responsive gene expression, showed high-level, adjustable and reversible production of a human model glycoprotein in bench-scale culture systems, bioreactor-based biopharmaceutical manufacturing scenarios, and after implantation into mice. The vitamin H-responsive expression systems showed unique band pass filter-like regulation features characterized by high-level expression at low (0–2 nM biotin), maximum repression at intermediate (100–1000 nM biotin), and high-level expression at increased (>100 000 nM biotin) biotin concentrations. Sequential ON-to-OFF-to-ON, ON-to-OFF and OFF-to-ON expression profiles with graded expression transitions can all be achieved by simply increasing the level of a single inducer molecule without exchanging the culture medium. These novel expression characteristics mediated by an FDA-licensed inducer may foster advances in therapeutic cell engineering and manufacturing of difficult-to-produce protein therapeutics
Vitamin H-regulated transgene expression in mammalian cells
Although adjustable transgene expression systems are considered essential for future therapeutic and biopharmaceutical manufacturing applications, the currently available transcription control modalities all require side-effect-prone inducers such as immunosupressants, hormones and antibiotics for fine-tuning. We have designed a novel mammalian transcription-control system, which is reversibly fine-tuned by non-toxic vitamin H (also referred to as biotin). Ligation of vitamin H, by engineered Escherichia coli biotin ligase (BirA), to a synthetic biotinylation signal fused to the tetracycline-dependent transactivator (tTA), enables heterodimerization of tTA to a streptavidin-linked transrepressor domain (KRAB), thereby abolishing tTA-mediated transactivation of specific target promoters. As heterodimerization of tTA to KRAB is ultimately conditional upon the presence of vitamin H, the system is vitamin H responsive. Transgenic Chinese hamster ovary cells, engineered for vitamin H-responsive gene expression, showed high-level, adjustable and reversible production of a human model glycoprotein in bench-scale culture systems, bioreactor-based biopharmaceutical manufacturing scenarios, and after implantation into mice. The vitamin H-responsive expression systems showed unique band pass filter-like regulation features characterized by high-level expression at low (0-2 nM biotin), maximum repression at intermediate (100-1000 nM biotin), and high-level expression at increased (>100 000 nM biotin) biotin concentrations. Sequential ON-to-OFF-to-ON, ON-to-OFF and OFF-to-ON expression profiles with graded expression transitions can all be achieved by simply increasing the level of a single inducer molecule without exchanging the culture medium. These novel expression characteristics mediated by an FDA-licensed inducer may foster advances in therapeutic cell engineering and manufacturing of difficult-to-produce protein therapeutic
The food additive vanillic acid controls transgene expression in mammalian cells and mice
Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapie
A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1
We describe the design and detailed characterization of 6-hydroxy-nicotine (6HNic)-adjustable transgene expression (NICE) systems engineered for lentiviral transduction and in vivo modulation of angiogenic responses. Arthrobacter nicotinovorans pAO1 encodes a unique catabolic machinery on its plasmid pAO1, which enables this Gram-positive soil bacterium to use the tobacco alkaloid nicotine as the exclusive carbon source. The 6HNic-responsive repressor-operator (HdnoR-O(NIC)) interaction, controlling 6HNic oxidase production in A.nicotinovorans pAO1, was engineered for generic 6HNic-adjustable transgene expression in mammalian cells. HdnoR fused to different transactivation domains retained its O(NIC)-binding capacity in mammalian cells and reversibly adjusted transgene transcription from chimeric O(NIC)-containing promoters (P(NIC); O(NIC) fused to a minimal eukaryotic promoter [P(min)]) in a 6HNic-responsive manner. The combination of transactivators containing various transactivation domains with promoters differing in the number of operator modules as well as in their relative inter-O(NIC) and/or O(NIC)-P(min) spacing revealed steric constraints influencing overall NICE regulation performance in mammalian cells. Mice implanted with microencapsulated cells engineered for NICE-controlled expression of the human glycoprotein secreted placental alkaline phosphatase (SEAP) showed high SEAP serum levels in the absence of regulating 6HNic. 6HNic was unable to modulate SEAP expression, suggesting that this nicotine derivative exhibits control-incompatible pharmacokinetics in mice. However, chicken embryos transduced with HIV-1-derived self-inactivating lentiviral particles transgenic for NICE-adjustable expression of the human vascular endothelial growth factor 121 (VEGF(121)) showed graded 6HNic response following administration of different 6HNic concentrations. Owing to the clinically inert and highly water-soluble compound 6HNic, NICE-adjustable transgene control systems may become a welcome alternative to available drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturing
A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1
We describe the design and detailed characterization of 6-hydroxy-nicotine (6HNic)-adjustable transgene expression (NICE) systems engineered for lentiviral transduction and in vivo modulation of angiogenic responses. Arthrobacter nicotinovorans pAO1 encodes a unique catabolic machinery on its plasmid pAO1, which enables this Gram-positive soil bacterium to use the tobacco alkaloid nicotine as the exclusive carbon source. The 6HNic-responsive repressor-operator (HdnoR-ONIC) interaction, controlling 6HNic oxidase production in A.nicotinovorans pAO1, was engineered for generic 6HNic-adjustable transgene expression in mammalian cells. HdnoR fused to different transactivation domains retained its ONIC-binding capacity in mammalian cells and reversibly adjusted transgene transcription from chimeric ONIC-containing promoters (PNIC; ONIC fused to a minimal eukaryotic promoter [Pmin]) in a 6HNic-responsive manner. The combination of transactivators containing various transactivation domains with promoters differing in the number of operator modules as well as in their relative inter-ONIC and/or ONIC-Pmin spacing revealed steric constraints influencing overall NICE regulation performance in mammalian cells. Mice implanted with microencapsulated cells engineered for NICE-controlled expression of the human glycoprotein secreted placental alkaline phosphatase (SEAP) showed high SEAP serum levels in the absence of regulating 6HNic. 6HNic was unable to modulate SEAP expression, suggesting that this nicotine derivative exhibits control-incompatible pharmacokinetics in mice. However, chicken embryos transduced with HIV-1-derived self-inactivating lentiviral particles transgenic for NICE-adjustable expression of the human vascular endothelial growth factor 121 (VEGF121) showed graded 6HNic response following administration of different 6HNic concentrations. Owing to the clinically inert and highly water-soluble compound 6HNic, NICE-adjustable transgene control systems may become a welcome alternative to available drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturin
Streptomyces‐derived quorum‐sensing systems engineered for adjustable transgene expression in mammalian cells and mice
Prokaryotic transcriptional regulatory elements have been adopted for controlled expression of cloned genes in mammalian cells and animals, the cornerstone for gene‐function correlations, drug discovery, biopharmaceutical manufacturing as well as advanced gene therapy and tissue engineering. Many prokaryotes have evolved specific molecular communication systems known as quorum‐sensing to coordinate population‐wide responses to physiological and/or physicochemical signals. A generic bacterial quorum‐sensing system is based on a diffusible signal molecule that prevents binding of a repressor to corresponding operator sites thus resulting in derepression of a target regulon. In Streptomyces, a family of butyrolactones and their corresponding receptor proteins, serve as quorum‐sensing systems that control morphological development and antibiotic biosynthesis. Fusion of the Streptomyces coelicolor quorum‐sensing receptor (ScbR) to a eukaryotic transactivation domain (VP16) created a mammalian transactivator (SCA) which binds and adjusts transcription from chimeric promoters containing an SCA‐specific operator module (PSPA). Expression of erythropoietin or the human secreted alkaline phosphatase (SEAP) by this quorum‐sensor‐regulated gene expression system (QuoRex) could be fine‐tuned by non‐toxic butyrolactones in a variety of mammalian cells including human primary and mouse embryonic stem cells. Following intraperitoneal implantation of microencapsulated Chinese hamster ovary cells transgenic for QuoRex‐controlled SEAP expression into mice, the serum levels of this model glycoprotein could be adjusted to desired concentrations using different butyrolactone dosing regime
The food additive vanillic acid controls transgene expression in mammalian cells and mice
Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies