26 research outputs found

    Inhibition of cancer cell invasion and metastasis by genistein

    Get PDF
    Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein’s antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-β signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis

    Individual and combined soy isoflavones exert differential effects on metastatic cancer progression

    Get PDF
    To investigate the effects soy isoflavones in established cancers, the role of genistein, daidzein, and combined soy isoflavones was studied on progression of subcutaneous tumors in nude mice created from green fluorescent protein (GFP) tagged-MDA-MB-435 cells. Following tumor establishment, mice were gavaged with vehicle or genistein or daidzein at 10 mg/kg body weight (BW) or a combination of genistein (10 mg/kg BW), daidzein (9 mg/kg BW), and glycitein (1 mg/kg BW) three times per week. Tumor progression was quantified by whole body fluorescence image analysis followed by microscopic image analysis of excised organs for metastases. Results show that daidzein increased while genistein decreased mammary tumor growth by 38 and 33% respectively, compared to vehicle. Daidzein increased lung and heart metastases while genistein decreased bone and liver metastases. Combined soy isoflavones did not affect primary tumor growth but increased metastasis to all organs tested, which include lung, liver, heart, kidney, and bones. Phosphoinositide-3-kinase (PI3-K) pathway real time PCR array analysis and western blotting of excised tumors demonstrate that genistein significantly downregulated 10/84 genes, including the Rho GTPases RHOA, RAC1, and CDC42 and their effector PAK1. Daidzein significantly upregulated 9/84 genes that regulate proliferation and protein synthesis including EIF4G1, eIF4E, and survivin protein levels. Combined soy treatment significantly increased gene and protein levels of EIF4E and decreased TIRAP gene expression. Differential regulation of Rho GTPases, initiation factors, and survivin may account for the disparate responses of breast cancers to genistein and daidzein diets. This study indicates that consumption of soy foods may increase metastasis

    Profilin-1 deficiency leads to SMAD3 upregulation and impaired 3D outgrowth of breast cancer cells.

    Get PDF
    Adhesion-mediated activation of FAK/ERK signalling pathway, enabled by the formation of filopodial protrusions (FLP), has been shown to be an important event for triggering of dormancy-to-proliferation switch and metastatic outgrowth of breast cancer cells (BCC). We studied the role of actin-binding protein profilin1 (Pfn1) in these processes. Quantitative immunohistochemistry (IHC) of BC tissue microarray (TMA) and survival analyses of curated transcriptome datasets of BC patients were performed to examine Pfn1's association with certain clinicopathological features. FLP formation and single cell outgrowth of BCC were assessed using a 3D matrigel culture that accurately predicts dormant vs metastatic outgrowth phenotypes of BCC in certain microenvironment. Gene expression studies were performed to identify potential biological pathways that are perturbed under Pfn1-depleted condition. Lower Pfn1 expression is correlated with lower nuclear grade of breast tumours and longer relapse-free survival of BC patients. Pfn1 depletion leads to defects in FLP and outgrowth of BCC but without impairing either FAK or ERK activation. Guided by transcriptome analyses, we further showed that Pfn1 depletion is associated with prominent SMAD3 upregulation. Although knockdown and overexpression experiments revealed that SMAD3 has an inhibitory effect on the outgrowth of breast cancer cells, SMAD3 knockdown alone was not sufficient to enhance the outgrowth potential of Pfn1-depleted BCC suggesting that other proliferation-regulatory pathways in conjunction with SMAD3 upregulation may underlie the outgrowth-deficient phenotype of BCC cells upon depletion of Pfn1. Overall, these data suggest that Pfn1 may be a novel biomarker for BC recurrence and a possible target to reduce metastatic outgrowth of BCC
    corecore