2 research outputs found
Robust face recognition using convolutional neural networks combined with Krawtchouk moments
Face recognition is a challenging task due to the complexity of pose variations, occlusion and the variety of face expressions performed by distinct subjects. Thus, many features have been proposed, however each feature has its own drawbacks. Therefore, in this paper, we propose a robust model called Krawtchouk moments convolutional neural networks (KMCNN) for face recognition. Our model is divided into two main steps. Firstly, we use 2D discrete orthogonal Krawtchouk moments to represent features. Then, we fed it into convolutional neural networks (CNN) for classification. The main goal of the proposed approach is to improve the classification accuracy of noisy grayscale face images. In fact, Krawtchouk moments are less sensitive to noisy effects. Moreover, they can extract pertinent features from an image using only low orders. To investigate the robustness of the proposed approach, two types of noise (salt and pepper and speckle) are added to three datasets (YaleB extended, our database of faces (ORL), and a subset of labeled faces in the wild (LFW)). Experimental results show that KMCNN is flexible and performs significantly better than using just CNN or when we combine it with other discrete moments such as Tchebichef, Hahn, Racah moments in most densities of noises
Robust deep image clustering using convolutional autoencoder with separable discrete Krawtchouk and Hahn orthogonal moments
By cooperatively learning features and assigning clusters, deep clustering is superior to conventional clustering algorithms. Numerous deep clustering algorithms have been developed for a variety of application levels; however, the majority are still incapable of learning robust noise-resistant latent features, which limits the clustering performance. To address this open research challenge, we introduce, for the first time, a new approach called: Robust Deep Embedded Image Clustering algorithm with Separable Krawtchouk and Hahn Moments (RDEICSKHM). Our approach leverages the advantages of Krawtchouk and Hahn moments, such as local feature extraction, discrete orthogonality, and noise tolerance, to obtain a meaningful and robust image representation. Moreover, we employ LayerNormalization to further improve the latent space quality and facilitate the clustering process. We evaluate our approach on four image datasets: MNIST, MNIST-test, USPS, and Fashion-MNIST. We compare our method with several deep clustering methods based on two metrics: clustering accuracy (ACC) and normalized mutual information (NMI). The experimental results show that our method achieves superior or competitive performance on all datasets, demonstrating its effectiveness and robustness for deep image clustering