57 research outputs found
A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol
Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D1 receptors (D1Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol
Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes
Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression
Recurring Ethanol Exposure Induces Disinhibited Courtship in Drosophila
Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity
Receptor crosstalk: characterization of mice deficient in dopamine D1 and adenosine A2A receptors.
Here we report the development of D1A2A receptor knockout mice to investigate whether interactions between dopamine D1 and adenosine A2A receptors participate in reward-related behavior. The combined deletion of D1 and A2A receptors resulted in mice with decreased weight and appetitive processes, reduced rearing and exploratory behaviors, increased anxiety, and a significantly poorer performance on the rotarod, compared to wild-type littermates. D1A2A receptor knockout mice shared phenotypic similarities with mice deficient in D1 receptors, while also paralleling behavioral deficits seen in A2A receptor knockout mice, indicating individual components of the behavioral phenotype of the D1A2A receptor knockout attributable to the loss of both receptors. In contrast, ethanol and saccharin preference in D1A2A receptor knockout mice were distinctly different from that observed in derivative D1 or A2A receptor-deficient mice. Compared to wild types, preference and consumption of ethanol were decreased in D1A2A receptor knockout mice, the reduction in ethanol consumption greater even than that seen in D1 receptor-deficient mice. Preference and consumption of saccharin were also reduced in D1A2A receptor knockout mice, whereas saccharin preference was similar in wild-type, D1, and A2A receptor knockout mice. These data suggest an interaction of D1 and A2A receptors in the reinforcement processes underlying the intake of rewarding substances, whereby the A2A receptor seems involved in goal-directed behavior and the motor functions underlying the expression of such behaviors, and the D1 receptor is confirmed as essential in mediating motivational processes related to the repeated intake of novel substances and drugs.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR)
Rationale
Mathematical models can assist the interpretation of the effects of interventions on schedule-controlled behaviour and help to differentiate between processes that may be confounded in traditional performance measures such as response rate and the breakpoint in progressive ratio (PR) schedules.
Objective
The effects of a D1-like dopamine receptor antagonist, 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide (SKF-83566), and a D2-like receptor antagonist, haloperidol, on rats’ performance on PR schedules maintained by sucrose and corn oil reinforcers were assessed using a new model derived from Killeen’s (Behav Brain Sci 17:105–172, 1994) Mathematical Principles of Reinforcement.
Method
Separate groups of rats were trained under a PR schedule using sucrose or corn oil reinforcers. SKF-83566 (0.015 and 0.03 mg kg−1) and haloperidol (0.05 and 0.1 mg kg−1) were administered intraperitoneally (five administrations of each treatment). Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model’s parameters were compared between treatments.
Results
Haloperidol reduced a (the parameter expressing incentive value) in the case of both reinforcers, but did not affect the parameters related to response time and post-reinforcement pausing. SKF-83566 reduced a and k (the parameter expressing sensitivity of post-reinforcement pausing to the prior inter-reinforcement interval) in the case of sucrose, but did not affect any of the parameters in the case of corn oil.
Conclusions
The results are consistent with the hypothesis that blockade of both D1-like and D2-like receptors reduces the incentive value of sucrose, whereas the incentive value of corn oil is more sensitive to blockade of D2-like than D1-like receptors
- …