17 research outputs found

    N-Methylformamide : documentation of proposed values of occupational exposure limits (OELs)

    No full text
    N-Metyloformamid to bezbarwna ciecz o amoniakalnym zapachu stosowana jako rozpuszczalnik i półprodukt do reakcji chemicznych. Nie ma danych o narażeniu ludzi w warunkach zawodowych w Polsce.N-Metyloformamid bardzo dobrze wchłania się do organizmu człowieka. Wartości LD50 dla N-metyloformamidu podanego zwierzętom różnymi drogami są zbliżone (2 600 ÷ 4 000 mg/kg mc.). Po jednorazowym lub krótkoterminowym podawaniu związku w dawkach 100 ÷ 1 200 mg/kg mc. obserwowano nasilające się objawy uszkodzenia wątroby. Największe stężenie nie powodujące skutków szkodliwych (NOAEC) wynosiło 120 mg/m³ (dwutygodniowe inhalacyjne narażenie szczurów). Przy stężeniach 320 mg/m³ oraz 980 mg/m³ obserwowano nasilające się skutki działania hepatotoksycznegoN-metyloformamidu. Działanie toksyczne na wątrobę przyjęto za skutek krytyczny. Brakuje danych o działaniu podprzewlekłym, przewlekłym oraz rakotwórczym związku na zwierzęta laboratoryjne.N-Metyloformamid nie działał mutagennie i genotoksycznie, ale powodował skutki embriotoksyczne i teratogenne. Za podstawę do wyznaczenia wartości NDS dla N-metyloformamidu przyjęto wartość NOAEC (120 mg/m³), a wartość NDSN-metyloformamidu wyliczono na poziomie 3,3 mg/m³. Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stꬿenia w materiale biologicznym (DSB). Zaproponowano oznakowanie związku jako „Ft” (substancja o działaniu szko¬dliwym na rozrodczość) oraz „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.N-Methylformamide is a colorless liquid with an ammoniacal odor, used as a solvent and an intermediate for chemical reactions. There are no data on occupational exposure in Poland. N-Methylformamide is very well absorbed into the human body. The LD50 values for N-methylformamide administered to animals in various routes are similar (2600–4000 mg/kg bw). After single or short-term administration of the compound in doses of 100–1200 mg/kg bw. worsening symptoms of liver damage have been observed. No-observed adverse effect concentration (NOAEC) was established at 120 mg/m³ (two-week inhalation exposure in rats). Increase of hepatotoxic effect of N-methylformamide were observed at concentrations of 320 mg/m³ and 980 mg/m³ . There are no data on the sub-chronic, chronic and carcinogenic effects of the compound in laboratory animals. N-Methylformamide was not mutagenic and genotoxic. It caused embryotoxic and teratogenic effects. The NOAEC value (120 mg/m³ ) was used as the basis for determining the MAC (maximum acceptable concentration) value for N-methylformamide, and the MAC value for N-methylformamide was calculated at 3.3 mg/m³ . There are no basis to determine the short-term value (STEL) and biological limit value (BLV). It has been proposed to label the compound as ˝Ft˝ (toxic for repoduction) and ˝skin˝ (skin absorption of the substance may be as important as inhalation exposure). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    1-Decanol and its isomers: 2-decanol, 3-decanol, 4-decanol, 5-decanol. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Dekan-1-ol [112-30-1] jest alifatycznym alkoholem tłuszczowym o dziesięciu atomach węgla. Jest on jednym z pięciu izomerów dekanolu. Są to alkohole o średniej długości łańcucha, które znalazły zastosowanie w produkcji: rozpuszczalników, środków powierzchniowo czynnych, pestycydów, smarów, wosków, kremów oraz kosmetyków. Dekan-1-ol i dekan-3-ol są stosowane również jako syntetyczne substancje smakowo-zapachowe dodawane do żywności. Związek ten naturalnie występuje w olejkach eterycznych pozyskiwanych z nasion i kwiatów różnych roślin, na skalę przemysłową jest otrzymywany na drodze syntezy chemicznej. Narażenie zawodowe na dekan-1-ol dotyczy osób uczestniczących w procesie produkcji i stosowania tej substancji. W warunkach pracy zawodowej głównymi drogami narażenia są układ oddechowy i skóra. Do najczęstszych objawów zatrucia należą podrażnienie oczu i skóry. Wyniki badań uzyskane z użyciem testów in vitro i in vivo wskazują, że dekan-1-ol nie działał mutagennie i genotoksycznie. W badaniach na zwierzętach nie zanotowano również zmian nowotworowych będących wynikiem narażenia na ten związek. W dostępnych wynikach badań brak jest informacji o toksyczności narządowej dekan-1-olu i/lub jego izomerów u ludzi, a także nie ma wystarczających wyników badań na zwierzętach narażanych drogą inhalacyjną lub pokarmową. Zaproponowano przyjąć za podstawę do wyznaczenia NDS dla dekan-1-olu wyniki badań uzyskane na zwierzętach dla związków o podobnej strukturze chemicznej, tj. 2-etyloheksanolu i oktan-1-olu. Zaproponowano wartość NDS dla dekan-1-olu i jego izomerów na poziomie 30 mg/m³ , a wartość chwilową NDSCh na poziomie 60 mg/m³ . Nie ma podstaw do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym – DSB. Ze względu na działanie drażniące substancję oznakowano literą „I”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.1-Decanol [112-30-1] is an aliphatic fatty alcohol with ten carbon atoms. It is one of five isomers of decanol. They are medium chain length alcohols that have found use in the manufacture of solvents, surfactants, pesticides, lubricants, waxes, creams and cosmetics. 1-Decanol and 3-decanol are also used as synthetic flavourings added to foods. This compound occurs naturally in essential oils extracted from the seeds and flowers of various plants, while on an industrial scale it is obtained by chemical synthesis. Occupational exposure to 1-decanol concerns individuals involved in the production process and use of this substance. Under occupational conditions, the main routes of exposure are the respiratory system and the skin. The most common symptoms of poisoning are eye and skin irritation. Results from in vitro and in vivo tests indicate that 1-decanol did not have mutagenic or genotoxic effects. Also, no tumour changes resulting from exposure to this compound were noted in animal studies. Available literature lacks information on organ toxicity of 1-decanol and/or its isomers in humans and there are no sufficient results of studies on animals exposed to the compound by inhalation or ingestion. The results of animal studies for compounds with a similar chemical structure, i.e. 2-ethylhexanol and octane-1-ol, were taken as the basis for the determination of the MAC (TWA) for 1-decanol. For 1-decanol and its isomers a MAC of 30 mg/m³ was proposed and STEL of 60 mg/m³ . There is no basis for setting a concentration limit value in biological material – DSB. The substance is labelled with the letter "I" for irritation.This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    N-Nitrosodimethylamine : documentation of proposed values of occupational exposure limits (OELs)

    No full text
    N-Nitrozodimetyloamina to palna, lotna, oleista ciecz o żółtej barwie i charakterystycznym zapachu. Stosowana jest w: przemyśle gumowym, skórzanym, odlewniczym oraz w rolnictwie. W Polsce w latach 2005-2016 na N-nitrozodimetyloaminę było narażonych od kilkudziesięciu do kilkuset osób rocznie. Największe stężenia, na które byli narażani pracownicy przemysłu gumowego, wynosiły 4,5 ÷ 9,2 μg/m3. Zatrucia ostre N-nitrozodimetyloaminą u ludzi zdarzały się w wyniku wypadków lub działań o podłożu kryminalnym. Brak jest informacji na temat toksycznego działania N-nitrozodimetyloaminy w warunkach narażenia zawodowego ludzi. Po dożołądkowym podaniu N-nitrozodimetyloaminy szczurom wartość LD50 wynosiła poniżej 50 mg/kg mc. Przewlekłe narażenie (przez 45 ÷ 52 tygodnie) szczurów na N-nitrozodimetyloaminę drogą pokarmową, w dawkach 0,144 ÷ 3,6 mg/kg mc./dzień, powodowało zależne od dawki nasilenie występowania przypadków nowotworów: wątroby, nerek i płuc oraz skrócenie czasu życia. U szczurów, które narażano inhalacyjnie na N-nitrozodimetyloaminę o stężeniach: 120; 600 lub 3 000 μg/m3 przez 207 dni, obserwowano – zależne od stężenia – zwiększenie śmiertelności zwierząt oraz występowanie nowotworów nosa. Najwięcej informacji na temat zależności skutku działania toksycznego od poziomu narażenia pochodzi z doświadczenia wykonanego na szczurach, którym N-nitrozodimetyloaminę podawano przewlekle w wodzie do picia w dawkach 0,001 ÷ 0,697 mg/kg mc./dzień (samcom) lub 0,002 ÷ 1,244 mg/kg mc./dzień (samicom). Dla dawek do 0,2 mg/kg mc./ dzień ryzyko występowania nowotworów wątroby rosło (w zależności od podanej dawki). N-Nitrozodimetyloamina działa mutagennie i genotoksycznie po aktywacji metabolicznej. Ma to związek z mechanizmem działania genotoksycznego i rakotwórczego, za który są odpowiedzialne metabolity. Międzynarodowa Agencja Badań nad Rakiem (IARC) zaliczyła N-nitrozodimetyloaminę do grupy 2A (prawdopodobnie rakotwórczy dla ludzi), w ACGIH (w 2001 r.) zakwalifikowano N-nitrozodimetyloaminę do grupy A3 (udowodnione działanie rakotwórcze na zwierzęta i nieznane działanie rakotwórcze na ludzi). Unia Europejska zaliczyła związek do kategorii kancerogenności 1B z przypisem „H350 – może powodować raka”. Podstawą obliczenia wartości NDS dla N-nitrozodimetyloaminy było przewlekłe narażenie szczurów na związek w wodzie do picia i obserwowane zmiany w wątrobie. Na podstawie tych badań przeprowadzono ocenę ryzyka powstania dodatkowego nowotworu, które posłużyło do zaproponowania wartości NDS na poziomie 0,0025 mg/m3, w którym ryzyko nowotworowe wynosiłoby 6,15 10-4. Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB). Zaproponowano także oznaczenie związku „Carc. 1B” (substancja rakotwórcza kat. 1B) oraz „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.N-Nitrosodimethylamine is a flammable, volatile, oily liquid with a yellow color and a characteristic odor. It is used in the rubber and leather industry, foundry and agriculture. In Poland, in the years 2005-2016, several dozen to several hundred people per year were exposed on N-nitrosodimethylamine. The highest concentrations to which rubber industry workers in Poland were exposed were 4.5–9.2 µg/m³ . Acute poisoning with N-nitrosodimethylamine in humans occurred as a result of accidents or criminal activities. After intragastric administration of N-nitrosodimethylamine to rats, LD50 was below 50 mg/kg bw. Chronic oral exposure (45–52 weeks) of rats to N-nitrosodimethylamine at doses of 0.144–3.6 mg/kg/day resulted in a dose-dependent increase in the cancer incidence of the liver, kidneys and lungs, and shortening of lifespan. Most information about the relationship between the toxic effects and level of exposure comes from an experiment performed on rats, in which N-nitrosodimethylamine was administered chronically in drinking water at doses of 0.001–0.697 mg/kg body weight/day (males) or 0.002–1.244 mg/kg bw./day (females). For doses up to 0.2 mg/kg/day, the risk of liver cancer increased (depending on the dose). N-Nitrosodimethylamine was mutagenic and genotoxic after metabolic activation. This is related to the mechanism of genotoxic and carcinogenic action of the metabolites. The International Agency for Research on Cancer (IARC) has included N-nitrosodimethylamine to 2A group (probably carcinogenic to humans), ACGIH (in 2001) qualified N-nitrosodimethylamine to A3 group (proven carcinogenicity to animals and unknown human carcinogenicity). The European Union has classified the compound with the inscription “H350 - can cause cancer”. The basis for the calculation of a threshold limit value-time weighted average (TLV-TWA; maximum acceptable concentration – MAC) for N-nitrosodimethylamine was the chronic exposure of rats to the compound in drinking water and observed changes in the liver. On the basis of these studies, an assessment of the risk of an additional tumor was made, which has been used to propose MAC-TWA values at 0.0025 mg/m³ , for which the cancer risk would be 6.15 × 10-4. There is no basis for the short-term exposure limit (STEL) or biological limit value (BLV). The notations “Carc. 1B” (carcinogenic substance Cat. 1B) and “skin” (absorption through the skin may be as important as in the case of inhalation) were proposed. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Kwas nitrylotrioctowy i jego sole. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

    No full text
    Kwas nitrylotrioctowy (NTA) i jego sole sodowe to białe ciała stałe, bez zapachu. NTA słabo rozpuszcza się w wodzie, w przeciwieństwie do jego soli trisodowej (Na3NTA), (najczęściej produkowanej i stosowanej). Kwas nitrylotrioctowy i jego sole (głównie Na3NTA) mają właściwości chelatujące i są stosowane jako zamienniki EDTA i wypełniacze w środkach czyszczących, wybielających i dezynfekujących. Na podstawie zgłoszonych do ECHA zidentyfikowanych zastosowań NTA i jego sole zaliczono do TOP 50 substancji rakotwórczych. Narażenie ludzi na NTA i jego sole może być związane z ich produkcją, przetwarzaniem i stosowaniem. W ekspozycji zawodowej największe stężenia NTA mieściły się w zakresie 0,24 ÷ 3,7 mg/m³ . U ludzi nie notowano wtedy żadnych objawów działania toksycznego związku. W Polsce nie ma danych dotyczących narażenia ludzi na NTA i jego sole. Sól trisodową kwasu nitrylotrioctowego zaliczono do kategorii 4 toksyczności ostrej, dla której wartość DL50 po podaniu dożołądkowym mieści się w granicach 1 300 ÷ 1 600 mg/kg mc. (u szczurów). Kwas nitrylotrioctowy i jego sole nie działają drażniąco i uczulająco. Narządem krytycznym działania NTA i jego soli u zwierząt są nerki. W toksyczności przewlekłej narażenie szczurów na stężenia 0,03 ÷ 1% Na3NTA w paszy powodowało objawy uszkodzenia nerek, a po stężeniach 1,5 ÷ 2% w paszy stwierdzono nowotwory układu moczowego. W IARC zaliczono NTA i jego sole do grupy 2B (czynniki przypuszczalnie rakotwórcze dla ludzi), a Unia Europejska zakwalifikowała Na3NTA do kategorii 2 z przypisem „H351 – podejrzewa się, że powoduje raka” i adnotacją „przy stężeniach > 5%”. Nie ma wiarygodnych dowodów na mutagenność NTA i jego soli. Kwas nitrylotrioctowy bardzo szybko wchłania się do organizmu, osiągając największe stężenia po 1 ÷ 2 h, z okresem półtrwania ok. 3 h. Wydala się głównie w postaci niezmienionej. Mechanizm działania toksycznego NTA jest związany z zaburzeniami w poziomie niektórych pierwiastków w nerkach, co prowadzi do uszkodzeń komórek, procesów proliferacyjnych i powstawania nowotworów pochodzenia nabłonkowego w układzie moczowym. Kwas nitrylotrioctowy i jego sole nasilają rakotwórcze działanie nitrozoamin w nerkach. Podstawą do ustalenia wartości NDS dla NTA były doświadczenia wykonane na zwierzętach, w wyniku których stwierdzono, że NTA i jego sole działają toksycznie na nerki (narząd krytyczny). Za wartość NDS przyjęto stężenie 3 mg/m³ . Nie ma podstaw do wyznaczenia najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.Nitrilotriacetic acid (NTA) and its sodium salts are white and odourless solids. NTA is poorly soluble in water, unlike its trisodium salt (Na3NTA) (the most commonly produced and used). Nitrilotriacetic acid and its salts (Na3NTA) have chelating properties and they are used as EDTA replacement and fillers in cleaning, bleaching and disinfecting agents. On the basis of the identified uses reported to ECHA, NTA and its salts were included in the TOP50 carcinogenic substances. Human exposure to NTA and its salts may be related to their production, processing and use. In occupational exposure, the highest concentrations of nitrilotriacetic acid ranged between 0.24 and 3.7 mg/m³ . No symptoms of a toxic effect were noted in humans at these concentrations. There are no data on human exposure to NTA and its salts in Poland. Trisodium nitrilotriacetate is classified as acute toxicity category 4, for which the LD50 value after intragastric administration is 1300 - 1600 mg/kg b.w. (in rats). The kidneys are the critical organs. Rats exposed chronically to Na3NTA at concentrations of 0.03% - 1% in feed caused symptoms of kidney damage, and at concentrations of 1.5% - 2% in feed – cancer of the urinary system was observed. IARC includes NTA and its salts to group 2B (presumably carcinogenic to humans), and the European Union has classified Na3NTA to category 2 with the footnote “H351 – suspected of causing cancer” and the annotation “at concentrations >5%”. There is no reliable evidence of mutagenicity of NTA and its salts. Nitrilotriacetic acid is very quickly absorbed into the body, reaching the highest concentrations after 1 - 2 hour, with a half-life of about 3 hours. It is excreted mainly unchanged. The mechanism of the toxic action of NTA is associated with disturbances in the level of certain elements in the kidneys, which lead to cell damage, proliferative processes, and the formation of epithelial neoplasms in the urinary tract. Nitrilotriacetic acid and its salts increase the carcinogenic effect of nitrosamines in the kidneys. The basis for determining the maximum acceptable concentration (MAC; TLV-TWA) for NTA were experiments performed on animals, in which NTA and its salts were found to be nephrotoxic. The concentration of 3 mg/m³ was assumed as the MAC value. There are no bases to determine the short-term exposure limit (STEL) and the biological limit value (BLV). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Thioacetamide – inhalable fraction : documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Tioacetamid występuje w postaci bezbarwnych kryształów o charakterystycznym zapachu merkaptanów. Dawniej był stosowany jako: fumigant zapobiegający gniciu pomarańczy, środek przyspieszający wulkanizację gumy oraz stabilizator oleju napędowego. Obecnie jest wykorzystywany w analizie jakościowej jako źródło siarkowodoru. Według informacji z Centralnego Rejestru Danych o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym w latach 2005-2016 w Polsce na tioacetamid narażonych było od 486 do 1 137 osób. Większość z nich stanowiły kobiety. Wartość LD50 po dożołądkowym podaniu związku szczurom wynosi 301 mg/kg mc. Tioacetamid ma silne działanie hepatotoksyczne. Tioacetamid podany szczurom w pojedynczej dawce powodował martwicę zrazików wątrobowych. Podawany wielokrotnie prowadził do uszkodzenia wątroby, o czym świadczyły m.in. zmiany biochemiczne (zwiększenie aktywności: aminotransferaz, gamma-glutamylotransferazy, alkalicznej fosfatazy oraz stężenia bilirubiny w surowicy), a także jej marskość. Skutki toksycznego działania tioacetamidu wykazane w doświadczeniach przewlekłych na zwierzętach świadczą o wyraźnej zależności ich występowania od czasu narażenia. Po przewlekłym narażeniu szczurów na tioacetamid w wodzie do picia (o stężeniu 0,03%, czyli około 35 mg/kg mc./dzień) lub w paszy (0,5% w paszy, czyli około 28 mg/kg mc./dzień) po 4 miesiącach notowano zapalenie wątroby i miejscowe ogniska martwicy w wątrobie, później zmiany te nasilały się, a po 8 ÷ 17 miesiącach występowały: przewlekłe zapalenie wątroby, marskość oraz nowotwory wątroby i przewodów żółciowych. Wyniki badań mutagenności i genotoksyczności tioacetamidu nie są jednoznaczne. Można przyjąć, że związek stwarza ryzyko uszkodzenia materiału genetycznego w warunkach in vivo, po biotransformacji do silnie hepatotoksycznego metabolitu. Przemiany metaboliczne tioacetamidu w organizmie prowadzą – w wyniku S-oksydacji, głównie przy udziale CYP2E1 – do sulfotlenku (TASO), a następnie hepatotoksycznego, bardzo reaktywnego sulfonu (TASO2). Ma on podstawowe znaczenie w mechanizmie działania toksycznego związku (łącząc się z makrocząsteczkami wątroby). Metabolity tioacetamidu nasilają także stres oksydacyjny. Wystąpienie nowotworów w przewlekłych eksperymentach na zwierzętach spowodowało, że Międzynarodowa Agencja Badań nad Rakiem (IARC) w 1987 roku zaliczyła tioacetamid do grupy 2B, czyli do czynników przypuszczalnie rakotwórczych dla człowieka. Zgodnie z klasyfikacją CLP eksperci Unii Europejskiej zaliczyli tioacetamid do substancji rakotwórczych kategorii zagrożenia 1B z przypisem H350 „może powodować raka”. Za podstawę wyznaczenia wartości najwyższego dopuszczalnego stężenia (NDS) przyjęto hepatotoksyczne działanie tioacetamidu na szczury, którym podawano związek wielokrotnie drogą dożołądkową. Za wartość NDS zaproponowano stężenie 1,5 mg/m3 . Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB). Zaproponowano także oznaczenie związku „Carc. 1B” informujące, że jest to substancja rakotwórcza kategorii zagrożenia 1B. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.Thioacetamide occurs in the form of colorless crystals with a characteristic smell of mercaptans. It was used in the past as a fumigant to prevent oranges from rotting, in rubber vulcanization and as a diesel stabilizer. It is currently used in a qualitative analysis as a source of hydrogen sulfide. According to information from the Central Register of Data on Exposure to Carcinogenic or Mutagenic Substances, Mixtures, Factors or Technological Processes in 2005-2016 from 486 to 1137 people were exposed to thioacetamide in Poland. Most of them were women. The LD50 value after intragastric administration of the compound to rats is 301 mg/kg. Thioacetamide is a strong hepatotoxic agent, its single dose caused hepatic necrosis. Administered repeatedly it induced liver damage, which was indicated by biochemical changes and cirrhosis. The effects of thioacetamide toxicity in chronic animal experiments indicated a relationship to exposure time. After chronic exposure of rats to thioacetamide in drinking water (at 0.03%, i.e., approximately 35 mg/kg/day) or in feed (0.5% in feed, i.e., approximately 28 mg/kg/day), hepatitis and local hepatic foci were noted after 4 months, these changes later intensified, and after 8–17 months chronic hepatitis, cirrhosis and cancer of the liver and bile ducts occurred. The results of mutagenicity and genotoxicity studies of thioacetamide are inconclusive. It can be assumed that the compound may damage genetic material in vivo after biotransformation to a highly hepatotoxic metabolite. The metabolism of thioacetamide by S-oxidation (mainly with the participation of CYP2E1) leads to the production of sulfoxide (TASO), and then to hepatotoxic, highly reactive sulfone (TASO2). The latter is of fundamental importance for the mechanism of toxic action of thioacetamide (by binding with hepatic macromolecules). Thioacetamide metabolites also induce oxidative stress. Because of neoplasms observed in chronic studies, International Agency for Research on Cancer (IARC) included thioacetamide in group 2B – agents probably carcinogenic to humans. According to the CLP classification, thioacetamide is a category-1B carcinogen with a “H350 – May cause cancer” note. The hepatotoxic effects of thioacetamide in rats after repeated administration were used as the basis for determining the maximum acceptable concentration (MAC; TLV-TWA – threshold limit value-time weighted average). A concentration of 1.5 mg/m3 was proposed as the MAC value. There are no bases to determine the short-term exposure limit (STEL) and the biological limit value (BLV). “Carc. 1B” marking is also proposed, as thioacetamide is a category-1B carcinogen. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Bis(2-ethylhexyl) phthalate. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Ftalan bis(2-etyloheksylu) (DEHP) był powszechnie stosowany w przeszłości, głównie jako plastyfikator. Narażenie zawodowe na DEHP występuje w czasie jego produkcji oraz stosowania, zaś narażenie środowiskowe jest związane z produktami zawierającymi ten związek oraz ze spożywaniem zanieczyszczonej żywności lub wody. Unia Europejska wprowadziła zakaz obrotu produktów zawierających DEHP w stężeniu ≥0,1%. Wchłanianie tego flatalanu może zachodzić drogą pokarmową i inhalacyjną, przechodzi on również przez barierę łożyskową oraz do mleka matki. Dane epidemiologiczne wskazują na związek między narażeniem na DEHP (zarówno zawodowym, jak i środowiskowym) a funkcjonowaniem męskiego układu rozrodczego. Nie wykazano bezpośredniej zależności między narażeniem na DEHP a bezpłodnością. W badaniach na zwierzętach za najczulszy skutek toksyczności przewlekłej tego związku uznano zaburzenia spermatogenezy u szczurów. Jako podstawę do zaproponowania wartości NDS dla ftalanu bis(2-etyloheksylu) przyjęto toksyczne działanie na męski układ rozrodczy obserwowane u szczura (NOAEL = 5,8 mg/kg mc./dzień). Proponuje się przyjęcie wartości NDS dla ftalanu bis(2-etyloheksylu) na poziomie 0,8 mg/m³ Brak jest podstaw do ustalenia wartości NDSCh oraz DSB. Proponuje się notację „Ft” – substancja działająca szkodliwie na rozrodczość. Z powodu niewielkiego wchłaniania DEHP drogą dermalną brak jest podstaw do przyjęcia notacji „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiskaBis(2-ethylhexyl) phthalate (DEHP) has been widely used in the past mainly as a plasticizer. Occupational exposure to DEHP occurs during its production and use, and environmental exposure is related to products containing DEHP and contaminated food/water. The European Union has banned products containing DEHP in concentrations ≥0.1%. Absorption of DEHP may occur via the oral and inhalation routes. DEHP crosses the placental barrier and passes into breast milk. Epidemiological data indicate an association between DEHP occupational and environmental exposures and male reproductive function. However, no direct relationship between DEHP exposure and infertility can be identified. In animal studies, impaired spermatogenesis in rats has been considered as the most sensitive effect of chronic toxicity of DEHP. The proposed MAC value for bis(2-ethylhexyl) phthalate (0.8 mg/m³) is based on toxic effects on the male reproductive system demonstrated in a chronic study on rats (NOAEL = 5.8 mg/kg bw/day). There is no basis for setting the STEL value (no local irritation) and BEI value. Due to the low dermal absorption of DEHP there is no basis for a “skin” notation, but “R” notation is required (toxic to reproduction). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Benzene. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Benzen jest bezbarwną lub lekko żółtą cieczą o charakterystycznym zapachu. Naturalnymi źródłami benzenu są gazy emitowane z wulkanów i pożarów lasów oraz produkty ropopochodne. Benzen stosuje się przede wszystkim jako rozpuszczalnik oraz materiał wyjściowy w syntezie wielu chemikaliów. W Polsce w 2020 r. 28 osób pracowało w narażeniu na benzen o stężeniach powyżej obowiązującej wartości NDS. Benzen działa narkotycznie w warunkach zatrucia ostrego. Ciekły działa drażniąco. Po narażeniu przewlekłym u ludzi obserwowano zmiany hematologiczne we krwi oraz nowotwory, w tym ostrą białaczkę szpikową. Podobne efekty obserwowano u zwierząt laboratoryjnych. Benzen i/lub jego metabolity wykazują działanie genotoksyczne. Takie działanie benzenu wykazano u ludzi zawodowo narażonych na związek o stężeniu <3,2 mg/m3(<1 ppm). Benzen nie jest teratogenem dla zwierząt. Jako wartość NDS dla benzenu proponuje się przyjąć stężenie rekomendowane w dyrektywie Parlamentu Europejskiego i Rady, zmieniającej dyrektywę 2004/37/WE, tj. 0,66 mg/m3. Ryzyko wystąpienia białaczki u pracowników zawodowo narażonych na benzen o stężeniu 0,66 mg/m3 mieści się w zakresie 2,7 · 10−4 ÷ 1˚10−3. Proponuje się także dodać notacje: „Carc. 1A” (substancja rakotwórcza kategorii zagrożenia 1A); „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową); „Muta. 1B” (działanie mutagenne na komórki rozrodcze kategorii zagrożenia 1B). Jako biomarkery zawodowego narażenia na benzen zaproponowano stężenie benzenu 2,5 μg/l moczu oraz stężenie kwasu S-fenylomerkapturowego (S-PMA) na poziomie 9,0 μg/g kreatyniny w moczu. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.Benzene is a colorless to slightly yellow liquid with the characteristic odor. Gases emitted from volcanoes and forest fires as well as petroleum products are natural sources of benzene. It is used primarily as a solvent and a starting material in the synthesis of many chemicals. In 2020 Poland, 28 people were exposed to benzene in concentrations exceeding the current TLV value. Benzene is a narcotic under the severe poisoning conditions. The liquid is irritating. Haematological changes in the blood and neoplasms, including acute myeloid leukemia, have been observed in humans after chronic exposure. Similar effects were seen in laboratory animals. Benzene and/or its metabolites are genotoxic. Such an effect of benzene was demonstrated in people occupationally exposed to the compound at a concentration of < 3.2 mg/m³ (< 1 ppm). Benzene is not an animal teratogen. As the value of TLV for benzene, it is proposed to adopt the concentration recommended in the Directive of the European Parliament and of the Council amending Directive 2004/37/EC, i.e. 0.66 mg/m3 . The risk of leukemia at employees professionally exposed to benzene at a concentration of 0.66 mg/m3 is within the range from 2.7 • 10−4 to 1 • 10−3. It is also proposed to add the following notations: “Carc. 1A” (carcinogenic substance of hazard category 1A); “Skin” (the absorption of substances through the skin may be as important as for inhalation exposure); “Muta. 1B” (germ cell mutagenicity, hazard category 1B). Benzene concentration of 2.5 µg/l of urine and the concentration of S-phenylmercapturic acid (S-PMA) at the level of 9.0 µg/g of creatinine in urine were proposed as biomarkers of occupational exposure to benzene. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Diesel engine exhaust, measured as elemental carbon. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Spaliny emitowane z silników Diesla (SESD) to wieloskładnikowe mieszaniny związków chemicznych powstające w wyniku niecałkowitego spalania paliwa i oleju silnikowego. Działanie toksyczne spalin jest związane z obecnością w nich związków o działaniu toksycznym i kancerogennym. W GIS podano w 2019 r., że liczba pracowników zatrudnionych w warunkach stanowiących 0,1 ÷ 0,5 wartości NDS (obowiązujących dla spalin emitowanych z silników Diesla) w 2017 r. oraz w 2018 r. wynosiła odpowiednio 1 071 i 986, natomiast w warunkach 0,5 ÷ 1 NDS wynosiła odpowiednio 26 i 46. W wykazie chorób zawodowych w latach 2013- 2017 zarejestrowano 2 przypadki nowotworów: jeden pęcherza moczowego i jeden krtani (narażenie na WWA obecne w spalinach). W klinicznym obrazie ostrego zatrucia spalinami dominuje działanie drażniące na błony śluzowe oczu i górnych dróg oddechowych. Podrażnienie spojówek oczu jest uważane za jeden z bardziej czułych wskaźników narażenia na spaliny. Zatrucia przewlekłe są obserwowane zazwyczaj u osób zawodowo narażonych przez co najmniej kilka lat. Dominują u nich zmiany czynnościowe i morfologiczne w układzie oddechowym. Przedłużające się narażenie na duże stężenia spalin powodowało: kumulację cząstek stałych w makrofagach, zmiany w komórkach płuc, zwłóknienie i metaplazję nabłonka. Narażenie na spaliny może zaostrzać objawy istniejących już chorób, np. astmy czy alergii. Wyniki badań epidemiologicznych świadczą o istnieniu związku pomiędzy zawodowym narażeniem na spaliny emitowane z silników Diesla a zwiększoną częstością występowania pewnych grup nowotworów, głównie raka płuca i raka pęcherza moczowego. W badaniach przeprowadzonych na zwierzętach laboratoryjnych wykazano, że narażenie na spaliny emitowane z silników Diesla powodowało zaburzenia układów: oddechowego, krążenia, nerwowego i odpornościowego. W testach mutagenności wykazano dodatnie reakcje w kilku szczepach Salmonella. Wyniki badań na zwierzętach (narażenie prenatalne i dorosłych osobników) świadczą o tym, że narażenie na spaliny może mieć wpływ na płodność samców. W załączniku III Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 zostały zamieszczone wartości dopuszczalne narażenia zawodowego zmieniające dyrektywę 2004/37/WE. Dla spalin emitowanych z silników Diesla dla 8-godzinnego dnia pracy wartość ta została ustalona na 0,05 mg/m3 (mierzone jako węgiel elementarny). Po 1 ÷ 2-godzinnym narażeniu inhalacyjnym ludzi na stężenia 75 ÷ 225 µg/m³ (jako węgiel elementarny) obserwowano zmniejszenie parametrów czynnościowych układu oddechowego oraz wystąpienie zmian zapalnych w płucach. Brak jest wystarczających danych dotyczących narażenia zawodowego na spaliny emitowane z silników Diesla nowej generacji. W związku z tym zaproponowano przyjąć jako wartość NDS dla spalin emitowanych z silników Diesla stężenie 0,05 mg/m³ (mierzone jako węgiel elementarny) ujęte w Dyrektywie 2019/130, bez wyznaczania wartości NDSCh oraz NDSP. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.Exhaust emissions from diesel engines (SESD) are multi-component mixtures of chemical compounds resulting from incomplete combustion of fuel and engine oil. The toxic effect of exhaust gases is associated with the presence of toxic and carcinogenic compounds in them. GIS reports in 2019 that the number of employees employed in conditions constituting 0.1– 0.5 of MAC-TWA (applicable for exhaust emissions from diesel engines) in 2017 and in 2018 was 1071 and 986, respectively, while in conditions 5–1 MAC-TWA were 26 and 46, respectively. In the list of occupational diseases in the years 2013–2017, two cases of cancer were registered: in the bladder and in the larynx (exposure to PAHs present in exhaust gases). In the clinical picture of acute exhaust poisoning, irritant effects on the mucous membranes of the eyes and upper respiratory tract predominate. Eye conjunctival irritation is considered to be one of the most sensitive indicators of exhaust gas exposure. Chronic poisoning is usually seen in people who have been exposed to work for at least several years. Functional and morphological changes in the respiratory system dominate. Prolonged exposure to high concentrations of exhaust gases has resulted in accumulation of solid particles in macrophages, changes in lung cells, fibrosis and epithelial metaplasia. Exposure to exhaust fumes can exacerbate the symptoms of existing diseases, e.g., asthma, allergies. The results of epidemiological studies indicate a relationship between occupational exposure to exhaust gas emitted from diesel engines and the increased incidence of certain groups of cancers, mainly lung cancer and bladder cancer. Studies conducted on laboratory animals have shown that exposure to exhaust fumes emitted from diesel engines caused disorders of the respiratory, circulatory, nervous and immune systems. Mutagenicity tests showed positive responses in several Salmonella strains. Animal studies (prenatal and adult exposure) suggest that exposure to exhaust gas may affect male fertility. Annex III of Directive (EU) 2019/130 of the European Parliament and of the Council contains occupational exposure limit values amending Directive 2004/37/EC. For exhaust emissions from diesel engines for an 8-hour working day, this value was set at 0.05 mg/m³ (measured as elemental carbon). After 1–2 hours of human inhalation exposure to concentrations of 75–225 µg/m³ (as elemental carbon), a decrease in respiratory function parameters and the occurrence of inflammatory changes in the lungs were observed. There is insufficient data on occupational exposure to exhaust emissions from new-generation diesel engines. Therefore, it was proposed to adopt as the MAC-TWA value for exhaust emissions from diesel engines a concentration of 0.05 mg/m³ (measured as elemental carbon) included in Directive 2019/130, without setting STEL and TLV-C. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Thioacetamide – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Tioacetamid występuje w postaci bezbarwnych kryształów o charakterystycznym zapachu merkaptanów. Dawniej był stosowany jako: fumigant zapobiegający gniciu pomarańczy, środek przyspieszający wulkanizację gumy oraz stabilizator oleju napędowego. Obecnie jest wykorzystywany w analizie jakościowej jako źródło siarkowodoru. Według informacji z Centralnego Rejestru Danych o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym w latach 2005-2016 w Polsce na tioacetamid narażonych było od 486 do 1 137 osób. Większość z nich stanowiły kobiety. Wartość LD50 po dożołądkowym podaniu związku szczurom wynosi 301 mg/kg mc. Tioacetamid ma silne działanie hepatotoksyczne. Tioacetamid podany szczurom w pojedynczej dawce powodował martwicę zrazików wątrobowych. Podawany wielokrotnie prowadził do uszkodzenia wątroby, o czym świadczyły m.in. zmiany biochemiczne (zwiększenie aktywności: aminotransferaz, gamma-glutamylotransferazy, alkalicznej fosfatazy oraz stężenia bilirubiny w surowicy), a także jej marskość. Skutki toksycznego działania tioacetamidu wykazane w doświadczeniach przewlekłych na zwierzętach świadczą o wyraźnej zależności ich występowania od czasu narażenia. Po przewlekłym narażeniu szczurów na tioacetamid w wodzie do picia (o stężeniu 0,03%, czyli około 35 mg/kg mc./dzień) lub w paszy (0,5% w paszy, czyli około 28 mg/kg mc./dzień) po 4 miesiącach notowano zapalenie wątroby i miejscowe ogniska martwicy w wątrobie, później zmiany te nasilały się, a po 8 ÷ 17 miesiącach występowały: przewlekłe zapalenie wątroby, marskość oraz nowotwory wątroby i przewodów żółciowych. Wyniki badań mutagenności i genotoksyczności tioacetamidu nie są jednoznaczne. Można przyjąć, że związek stwarza ryzyko uszkodzenia materiału genetycznego w warunkach in vivo, po biotransformacji do silnie hepatotoksycznego metabolitu. Przemiany metaboliczne tioacetamidu w organizmie prowadzą – w wyniku S-oksydacji, głównie przy udziale CYP2E1 – do sulfotlenku (TASO), a następnie hepatotoksycznego, bardzo reaktywnego sulfonu (TASO2). Ma on podstawowe znaczenie w mechanizmie działania toksycznego związku (łącząc się z makrocząsteczkami wątroby). Metabolity tioacetamidu nasilają także stres oksydacyjny. Wystąpienie nowotworów w przewlekłych eksperymentach na zwierzętach spowodowało, że Międzynarodowa Agencja Badań nad Rakiem (IARC) w 1987 roku zaliczyła tioacetamid do grupy 2B, czyli do czynników przypuszczalnie rakotwórczych dla człowieka. Zgodnie z klasyfikacją CLP eksperci Unii Europejskiej zaliczyli tioacetamid do substancji rakotwórczych kategorii zagrożenia 1B z przypisem H350 „może powodować raka”. Za podstawę wyznaczenia wartości najwyższego dopuszczalnego stężenia (NDS) przyjęto hepatotoksyczne działanie tioacetamidu na szczury, którym podawano związek wielokrotnie drogą dożołądkową. Za wartość NDS zaproponowano stężenie 1,5 mg/m3 . Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB). Zaproponowano także oznaczenie związku „Carc. 1B” informujące, że jest to substancja rakotwórcza kategorii zagrożenia 1B. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.Thioacetamide occurs in the form of colorless crystals with a characteristic smell of mercaptans. It was used in the past as a fumigant to prevent oranges from rotting, in rubber vulcanization and as a diesel stabilizer. It is currently used in a qualitative analysis as a source of hydrogen sulfide. According to information from the Central Register of Data on Exposure to Carcinogenic or Mutagenic Substances, Mixtures, Factors or Technological Processes in 2005-2016 from 486 to 1137 people were exposed to thioacetamide in Poland. Most of them were women. The LD50 value after intragastric administration of the compound to rats is 301 mg/kg. Thioacetamide is a strong hepatotoxic agent, its single dose caused hepatic necrosis. Administered repeatedly it induced liver damage, which was indicated by biochemical changes and cirrhosis. The effects of thioacetamide toxicity in chronic animal experiments indicated a relationship to exposure time. After chronic exposure of rats to thioacetamide in drinking water (at 0.03%, i.e., approximately 35 mg/kg/day) or in feed (0.5% in feed, i.e., approximately 28 mg/kg/day), hepatitis and local hepatic foci were noted after 4 months, these changes later intensified, and after 8–17 months chronic hepatitis, cirrhosis and cancer of the liver and bile ducts occurred. The results of mutagenicity and genotoxicity studies of thioacetamide are inconclusive. It can be assumed that the compound may damage genetic material in vivo after biotransformation to a highly hepatotoxic metabolite. The metabolism of thioacetamide by S-oxidation (mainly with the participation of CYP2E1) leads to the production of sulfoxide (TASO), and then to hepatotoxic, highly reactive sulfone (TASO2). The latter is of fundamental importance for the mechanism of toxic action of thioacetamide (by binding with hepatic macromolecules). Thioacetamide metabolites also induce oxidative stress. Because of neoplasms observed in chronic studies, International Agency for Research on Cancer (IARC) included thioacetamide in group 2B – agents probably carcinogenic to humans. According to the CLP classification, thioacetamide is a category-1B carcinogen with a “H350 – May cause cancer” note. The hepatotoxic effects of thioacetamide in rats after repeated administration were used as the basis for determining the maximum acceptable concentration (MAC; TLV-TWA – threshold limit value-time weighted average). A concentration of 1.5 mg/m3 was proposed as the MAC value. There are no bases to determine the short-term exposure limit (STEL) and the biological limit value (BLV). “Carc. 1B” marking is also proposed, as thioacetamide is a category-1B carcinogen. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering
    corecore