46 research outputs found
On the solution of strong nonlinear oscillators by applying a rational elliptic balance method
AbstractA rational elliptic balance method is introduced to obtain exact and approximate solutions of nonlinear oscillators by using Jacobi elliptic functions. To illustrate the applicability of the proposed rational elliptic forms in the solution of nonlinear oscillators, we first investigate the exact solution of the non-homogenous, undamped Duffing equation. Then, we introduce first and second order rational elliptic form solutions to obtain approximate solutions of two nonlinear oscillators. At the end of the paper, we compare the numerical integration values of the angular frequencies with approximate solution results, based on the proposed rational elliptic balance method
Fiber Laser Microcutting of AISI 316L Stainless Steel Tubes- influence of Pulse Energy and Spot Overlap on Back Wall Dross
AbstractThe design of coronary stents imposes high demands in terms of dimensional tolerance and surface finish. These devices are manufactured by laser microcutting of miniature tubes in materials such as stainless steel, cobalt chromium alloys and Nitinol. The work presented here is focused on fiber laser microcutting for coronary struts in AISI 316L stainless steel. This work studies the influence of gases such compressed air and argon passing through the tube in order to drag molten material while laser microcutting is performed. The experimental work studies the influence of beam spot overlap and pulse energy on back wall dross and average surface roughness, using response surface methodology. The results indicate that the introduction of compressed air or argon gas is a relevant method to reduce the amount of dross adhered in the back wall of the miniature tube
Stress-Softening and Residual Strain Effects in Suture Materials
This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2â0, polydioxanone 4â0, poly(glycolide-co-epsilon-caprolactone), nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data
Virulent Brucella nosferati infecting Desmodus rotundus has emerging potential due to the broad foraging range of its bat host for humans and wild and domestic animals
Desmodus rotundus, vampire bats, transmit dangerous infections, and brucellosis is a hazardous zoonotic disease, two adversities that coexist in the subtropical and tropical areas of the American continent. Here, we report a 47.89% Brucella infection prevalence in a colony of vampire bats inhabiting the tropical rainforest of Costa Rica. The bacterium induced placentitis and fetal death in bats. Wide-range phenotypic and genotypic characterization placed the Brucella organisms as a new pathogenic species named Brucella nosferati sp. nov., isolated from bat tissues, including the salivary glands, suggesting feeding behavior might favor transmission to their prey. Overall analyses placed B. nosferati as the etiological agent of a reported canine brucellosis case, demonstrating its potential for infecting other hosts. To assess the putative prey hosts, we analyzed the intestinal contents of 14 infected and 23 non-infected bats by proteomics. A total of 54,508 peptides sorted into 7,203 unique peptides corresponding to 1,521 proteins were identified. Twenty-three wildlife and domestic taxa, including humans, were foraged by B. nosferati-infected D. rotundus, suggesting contact of this bacterium with a broad range of hosts. Our approach is appropriate for detecting, in a single study, the prey preferences of vampire bats in a diverse area, demonstrating its suitability for control strategies where vampire bats thrive.
IMPORTANCE: The discovery that a high proportion of vampire bats in a tropical area is infected with pathogenic Brucella nosferati and that bats forage on humans and many wild and domestic animals is relevant from the perspective of emerging disease prevention. Indeed, bats harboring B. nosferati in their salivary glands may transmit this pathogenic bacterium to other hosts. This potential is not trivial since, besides the demonstrated pathogenicity, this bacterium possesses all the required virulent arsenal of dangerous Brucella organisms, including those that are zoonotic for humans. Our work has settled the basis for future surveillance actions in brucellosis control programs where these infected bats thrive. Moreover, our strategy to identify the foraging range of bats may be adapted for exploring the feeding habits of diverse animals, including arthropod vectors of infectious diseases, and therefore of interest to a broader audience besides experts on Brucella and bats. The discovery that a high proportion of vampire bats in a tropical area is infected with pathogenic Brucella nosferati and that bats forage on humans and many wild and domestic animals is relevant from the perspective of emerging disease prevention. Indeed, bats harboring B. nosferati in their salivary glands may transmit this pathogenic bacterium to other hosts. This potential is not trivial since, besides the demonstrated pathogenicity, this bacterium possesses all the required virulent arsenal of dangerous Brucella organisms, including those that are zoonotic for humans. Our work has settled the basis for future surveillance actions in brucellosis control programs where these infected bats thrive. Moreover, our strategy to identify the foraging range of bats may be adapted for exploring the feeding habits of diverse animals, including arthropod vectors of infectious diseases, and therefore of interest to a broader audience besides experts on Brucella and bats
Approximate Solutions of Delay Differential Equations with Constant and Variable Coefficients by the Enhanced Multistage Homotopy Perturbation Method
We expand the application of the enhanced multistage homotopy perturbation method (EMHPM) to solve delay differential equations (DDEs) with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions
Enhanced Mathematical Model for Producing Highly Dense Metallic Components through Selective Laser Melting
In this work, a previously developed mathematical model to predict bulk density of SLMed (produced via Selective Laser Melting) component is enhanced by taking laser power, scanning speed, hatch spacing, powderâs thermal conductivity and specific heat capacity as independent variables. Experimental data and manufacturing conditions for the selective laser melting (SLM) of metallic materials (which include aluminum, steel, titanium, copper, tungsten and nickel alloys) are adapted from the literature and used to evaluate the validity of the proposed enhanced model. A strong relation between dependent and independent dimensionless products is observed throughout the studied materials. The proposed enhanced mathematical model shows to be highly accurate since the computed root-mean-square-error values (RMSE) does not exceed 5 Ă 10â7. Furthermore, an analytical expression for the prediction of bulk density of SLMed components was developed. From this, an expression for determining the needed scanning speed, with respect to laser power, to achieve highly dense components produced via SLM, is derived
Designing and Prototyping of New Device for Scapholunate Ligament Repair
AbstractScapholunate instability, caused mainly due to tears in the scapholunate interosseous ligament (SLIL), may result in chronic pain, hand weakness, and lack of motion. Several open surgery procedures are used to repair it however long recovery time, widespread scarring and movement limitations are associated. Focusing on arthroscopy surgery, the combination of arthroscopy techniques and a prosthesis could be a good solution to manage it. A new prosthesis to substitute the SLIL was designed and manufactured. The design process was assessed by expert surgeons in wrist arthroscopy and the prototype manufactured allowed to analyze advantages and drawbacks of the adopted solution
A nonmonotonous damage model to characterize mullins and residual strain effects of rubber strings subjected to transverse vibrations
This work focuses on the formulation of a constitutive equation to predict Mullins and residual strain effects of buna-N, silicone, and neoprene rubber strings subjected to small transverse vibrations. The nonmonotone behavior exhibited by experimental data is captured by the proposed material model through the inclusion of a phenomenological non-monotonous softening function that depends on the strain intensity between loading and unloading cycles. It is shown that theoretical predictions compare well with uniaxial experimental data collected from transverse vibration tests. © 2013 Alex ElĂas-ZĂșñiga et al
Effect of Single-Walled Carbon Nanotubes on the Cross-Linking Process in Natural Rubber Vulcanization
In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the cross-linking of natural rubber (NR) using organic peroxides was investigated. NR-SWCNTs nanocomposites were prepared in an open two-roller mill followed by vulcanization with the compression molding process. Three different organic peroxides, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (T29), dicumyl peroxide (DCP), and 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne (T145), were used as vulcanizing agents. SWCNTs promote a remarkable reduction in the vulcanization time and increase the degree of cross-linking of vulcanized rubber when compared with neat or natural rubberâcarbon-black composites; the same tendency was obtained in the NR-SWCNTs vulcanized with sulfur. Additionally, the mechanical performance of the NR-SWCNTs composites was significantly improved up to 75, 83, 27, and 10% for tensile strength, moduli, tear strength, and hardness. Raman spectroscopy studies evidence the occurrence of reaction between nanotube walls and free radicals generated from using organic peroxides during the vulcanization process. These results demonstrate that the incorporation of SWCNTs in combination with the use of organic peroxides for the NR vulcanization represents a potential alternative for the improvement of the physicochemical properties of NR composites