38 research outputs found

    Locus-specific DNA methylation analysis of retrotransposons in ES, somatic and cancer cells using High-Throughput Targeted Repeat Element Bisulfite Sequencing

    Get PDF
    © 2014. DNA methylation is a major epigenetic mark associated with multiple aspects of retrotransposons within the mammalian genome. In order to study DNA methylation of a large number of retrotransposons on an individual-locus basis, we have developed a new protocol termed High-Throughput Targeted Repeat Element Bisulfite Sequencing (HT-TREBS) (Ekram and Kim, 2014 [1]). We have used this technique to characterize the locus-specific patterns of DNA methylation of 4799 members of the mouse IAP LTR (Intracisternal A Particle Long Terminal Repeat) retrotransposon family in embryonic stem, somatic and Neuro2A cells (Bakshi and Kim, 2014 [2]). Here we describe in detail the sample preparation and bioinformatics analyses used for these studies. The somatic cell data may be accessed under GEO accession number GSE49222. The ES and Neuro2A data are deposited under GEO accession number GSE60007

    Retrotransposons as a major source of epigenetic variations in the mammalian genome

    Get PDF
    Transcription of retrotransposons is usually repressed by DNA methylation, but a few elements, such as intracisternal A-particles (IAPs) associated with the Agouti and Axin-fused loci, partially escape this repression mechanism. The levels of this repression are also variable among individuals with an identical genome sequence, generating epigenetically different states of loci or epialleles. In the current study, we tested the existence of additional retrotransposon-derived epialleles in the mouse genome. Using a series of bioinformatics approaches, 143 candidate epialleles were first identified from the mouse genome based on their promoter activity and association with active histone modification marks. Detailed analyses suggest that a subset of these elements showed variable levels of DNA methylation among the individual mice of an isogenic background, revealing their stochastic nature (metastability) of DNA methylation. The analyses also identified two opposite patterns of DNA methylation during development, progressive gaining vs. losing, confirming the dynamic nature of their DNA methylation patterns. qRT-PCR analyses demonstrated that the expression levels of these elements are indeed variable among the individual mice, suggesting functional consequences on their associated endogenous genes. Overall, these data confirm the presence of a number of new retrotransposon-derived epialleles with suggestions ofthe presence of more, and further identify retrotransposons as a major source of epigenetic variations in the mammalian genome. © 2012 Landes Bioscience

    AEBP2 as a transcriptional activator and its role in cell migration

    Get PDF
    © 2014 Elsevier Inc. Aebp2 encodes an evolutionarily conserved zinc finger protein that has not been well studied so far, yet recent studies indicated that this gene is closely associated with the Polycomb Repressive Complex 2 (PRC2). Thus, the current study characterized the basic aspects of this gene, including alternative promoters and protein isoforms. According to the results, Aebp2 is controlled through three alternative promoters, deriving three different transcripts encoding the embryonic (32. kDa) and somatic (52. kDa) forms. Chromatin Immuno-Precipitation (ChIP) experiments revealed that AEBP2 binds to its own promoter as well as the promoters of Jarid2 and Snai2. While the embryonic form acts as a transcriptional repressor for Snai2, the somatic form functions as a transcriptional activator for Jarid2, Aebp2 and Snai2. Cell migration assays also demonstrated that the Aebp2 somatic form has an enhancing activity in cell migration. This is consistent with the functional association of Aebp2 with migratory neural crest cells. These results suggest that the two protein isoforms of AEBP2 may have opposite functions for the PcG target genes, and may play significant roles in cell migration during development

    Aebp2 as an epigenetic regulator for neural crest cells

    Get PDF
    Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2). We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung\u27s disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism

    DNA-binding motif and target genes of the imprinted transcription factor PEG3

    Get PDF
    The Peg3 gene is expressed only from the paternally inherited allele located on proximal mouse chromosome 7. The PEG3 protein encoded by this imprinted gene is predicted to bind DNA based on its multiple zinc finger motifs and nuclear localization. In the current study, we demonstrated PEG3\u27s DNA-binding ability by characterizing its binding motif and target genes. We successfully identified target regions bound by PEG3 from mouse brain extracts using chromatin immunoprecipitation analysis. PEG3 was demonstrated to bind these candidate regions through the consensus DNA-binding motif AGTnnCnnnTGGCT. In vitro promoter assays established that PEG3 controls the expression of a given gene through this motif. Consistent with these observations, the transcriptional levels of a subset of the target genes are also affected in a mutant mouse model with reduced levels of PEG3 protein. Overall, these results confirm PEG3 as a DNA-binding protein controlling specific target genes that are involved in distinct cellular functions. © 2012

    Imprinting control region (ICR) of the Peg3 domain

    Get PDF
    The imprinting and transcription of the 500 kb genomic region surrounding the mouse Peg3 is predicted to be regulated by the Peg3-differentially methylated region (DMR). In the current study, this prediction was tested using a mutant mouse line lacking this potential imprinting control region (ICR). At the organismal level, paternal and maternal transmission of this knockout (KO) allele caused either reduced or increased growth rates in the mouse, respectively. In terms of the imprinting control, the paternal transmission of the KO allele resulted in bi-allelic expression of the normally maternally expressed Zim2, whereas the maternal transmission switched the transcriptionally dominant allele for Zfp264 (paternal to maternal). However, the allele-specific DNA methylation patterns of the DMRs of Peg3, Zim2 and Zim3 were not affected in the mice that inherited the KO allele either paternally or maternally. In terms of the transcriptional control, the paternal transmission caused a dramatic down-regulation in Peg3 expression, but overall up-regulation in the other nearby imprinted genes. Taken together, deletion of the Peg3-DMR caused global changes in the imprinting and transcription of the Peg3 domain, confirming that the Peg3-DMR is an ICR for this imprinted domain. © The Author 2012. Published by Oxford University Press. All rights reserved

    Peg3 mutational effects on reproduction and placenta-specific gene families

    Get PDF
    Peg3 (paternally expressed gene 3) is an imprinted gene encoding a DNA-binding protein. This gene plays important roles in controlling fetal growth rates and nurturing behaviors. In the current study, a new mutant mouse model has been generated to further characterize the functions of this DNA-binding protein. Besides known phenotypes, this new mutant model also revealed potential roles of Peg3 in mammalian reproduction. Female heterozygotes produce a much smaller number of mature oocytes than the wild-type littermates, resulting in reduced litter sizes. According to genome-wide expression analyses, several placenta-specific gene families are de-repressed in the brain of Peg3 heterozygous embryos, including prolactin, cathepsin and carcinoembryonic antigen cell adhesion molecule (Ceacam) families. The observed derepression is more pronounced in females than in males. The de-repression of several members of these gene families is observed even in the adult brain, suggesting potential defects in epigenetic setting of the placenta-specific gene families in the Peg3 mutants. Overall, these results indicate that Peg3 likely controls the transcription of several placenta-specific gene families, and further suggest that this predicted transcriptional control by Peg3 might be mediated through unknown epigenetic mechanisms. © 2013 Kim et al

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance
    corecore