356 research outputs found
Josephson junction array type I-V characteristics of quench-condensed ultra thin films of Bi
In this communication we report studies of d.c current-voltage (I-V)
characteristics of ultra thin films of Bi, quench condensed on single crystal
sapphire substrates at T = 15K. The hysteretic I-V characteristics are
explained using a resistively and capacitively shunted junction (RCSJ) model of
Josephson junction arrays. The Josephson coupling energy() and the
charging energy() are calculated for different thickness() values. A
low resistance state is found in the low current regime below the critical
current, . This resistance is found to have a minimum at a
particular thickness () value. Reflection High Energy Electron Diffraction
(RHEED) studies are done on these films. A distinct appearance of a diffuse
ring near is observed in the diffraction images, consistent with the
recent STM studies(Ekinci and Valles, PRL {\bf 82}(1999) 1518). These films
show an irreversible annealing when temperature is increased. The annealing
temperature () also has a maximum at the same thickness. Althoguh the
R vs T of quench condensed Bi films suggest that the films are uniform, our
results indicate that even in thick films, the order parameter is not fully
developed over the complete area of the film. These results are discussed
qualitatively.Comment: 6 pages, 6 figure
Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films
In this paper we report the first experimental measurement of the infrared
conductivity of ultra-thin quenched-condensed Pb films. For dc sheet
resistances such that the ac conductance increases with
frequency but is in disagreement with the predictions of weak localization. We
attribute this behavior to the effects of an inhomogeneous granular structure
of these films, which is manifested at the very small probing scale of infrared
measurements. Our data are consistent with predictions of two-dimensional
percolation theory.Comment: Submitted to Physical Review Letter
q-Breathers and thermalization in acoustic chains with arbitrary nonlinearity index
Nonlinearity shapes lattice dynamics affecting vibrational spectrum,
transport and thermalization phenomena. Beside breathers and solitons one finds
the third fundamental class of nonlinear modes -- -breathers -- periodic
orbits in nonlinear lattices, exponentially localized in the reciprocal mode
space. To date, the studies of -breathers have been confined to the cubic
and quartic nonlinearity in the interaction potential. In this paper we study
the case of arbitrary nonlinearity index in an acoustic chain. We
uncover qualitative difference in the scaling of delocalization and stability
thresholds of -breathers with the system size: there exists a critical index
, below which both thresholds (in nonlinearity strength) tend to
zero, and diverge when above. We also demonstrate that this critical index
value is decisive for the presence or absense of thermalization. For a generic
interaction potential the mode space localized dynamics is determined only by
the three lowest order nonlinear terms in the power series expansion.Comment: 5 pages, 4 figure
Tunneling through a multigrain system: deducing the sample topology from the nonlinear conductance
We study a current transport through a system of a few grains connected with
tunneling links. The exact solution is given for an arbitrarily connected
double-grain system with a shared gate in the framework of the orthodox model.
The obtained result is generalized for multigrain systems with strongly
different tunneling resistances. We analyse the large-scale nonlinear
conductance and demonstrate how the sample topology can be unambiguously
deduced from the spectroscopy pattern (differential conductance versus
gate-bias plot). We present experimental data for a multigrain sample and
reconstruct the sample topology. A simple selection rule is formulated to
distinguish samples with spectral patterns free from spurious disturbance
caused by recharging of some grains nearby. As an example, we demonstrate
experimental data with additional peaks in the spectroscopy pattern, which can
not be attributed to coupling to additional grains. The described approach can
be used to judge the sample topology when it is not guaranteed by fabrication
and direct imaging is not possible.Comment: 13 pages (including 8 figures
Nonlinear response of a driven vibrating nanobeam in the quantum regime
We analytically investigate the nonlinear response of a damped doubly clamped
nanomechanical beam under static longitudinal compression which is excited to
transverse vibrations. Starting from a continuous elasticity model for the
beam, we consider the dynamics of the beam close to the Euler buckling
instability. There, the fundamental transverse mode dominates and a quantum
mechanical time-dependent effective single particle Hamiltonian for its
amplitude can be derived. In addition, we include the influence of a
dissipative Ohmic or super-Ohmic environment. In the rotating frame, a
Markovian master equation is derived which includes also the effect of the
time-dependent driving in a non-trivial way. The quasienergies of the pure
system show multiple avoided level crossings corresponding to multiphonon
transitions in the resonator. Around the resonances, the master equation is
solved analytically using Van Vleck perturbation theory. Their lineshapes are
calculated resulting in simple expressions. We find the general solution for
the multiple multiphonon resonances and, most interestingly, a bath-induced
transition from a resonant to an antiresonant behavior of the nonlinear
response.Comment: 25 pages, 5 figures, submitted to NJ
Effect of granularity on the insulator-superconductor transition in ultrathin Bi films
We have studied the insulator-superconductor transition (IST) by tuning the
thickness in quench-condensed films. The resistive transitions of the
superconducting films are smooth and can be considered to represent
"homogeneous" films. The observation of an IST very close to the quantum
resistance for pairs, on several substrates supports
this idea. The relevant length scales here are the localization length, and the
coherence length. However, at the transition, the localization length is much
higher than the superconducting coherence length, contrary to expectation for a
"homogeneous" transition. This suggests the invalidity of a purely fermionic
model for the transition. Furthermore, the current-voltage characteristics of
the superconducting films are hysteretic, and show the films to be granular.
The relevant energy scales here are the Josephson coupling energy and the
charging energy. However, Josephson coupling energies () and the charging
energies () at the IST, they are found to obey the relation .
This is again contrary to expectation, for the IST in a granular or
inhomogeneous, system. Hence, a purely bosonic picture of the transition is
also inconsistent with our observations. We conclude that the IST observed in
our experiments may be either an intermediate case between the fermioinc and
bosonic mechanisms, or in a regime of charge and vortex dynamics for which a
quantitative analysis has not yet been done.Comment: accepted in Physical Review
Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets
The electrical transport properties of amorphous Bi films prepared by
sequential quench deposition have been studied in situ. A
superconductor-insulator (S-I) transition was observed as the film was made
increasingly thicker, consistent with previous studies. Unexpected behavior was
found at the initial stage of film growth, a regime not explored in detail
prior to the present work. As the temperature was lowered, a positive
temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance
reaching a minimum before the dR/dT became negative again. This behavior was
accompanied by a non-linear and asymmetric I-V characteristic. As the film
became thicker, conventional variable-range hopping (VRH) was recovered. We
attribute the observed crossover in the electrical transport properties to an
amorphous to granular structural transition. The positive dR/dT found in the
amorphous phase of Bi formed at the initial stage of film growth was
qualitatively explained by the formation of metallic droplets within the
electron glass.Comment: 7 pages, 6 figure
Anisotropic Magnetoconductance in Quench-Condensed Ultrathin Beryllium Films
Near the superconductor-insulator (S-I) transition, quench-condensed
ultrathin Be films show a large magnetoconductance which is highly anisotropic
in the direction of the applied field. Film conductance can drop as much as
seven orders of magnitude in a weak perpendicular field (< 1 T), but is
insensitive to a parallel field in the same field range. We believe that this
negative magnetoconductance is due to the field de-phasing of the
superconducting pair wavefunction. This idea enables us to extract the finite
superconducting phase coherence length in nearly superconducting films. Our
data indicate that this local phase coherence persists even in highly
insulating films in the vicinity of the S-I transition.Comment: 4 pages, 4 figure RevTex, Typos Correcte
Physical inactivity in nine European and Central Asian countries: an analysis of national population-based survey results
Background
Physical inactivity is a major risk factor for non-communicable diseases. However, recent and systematically obtained national-level data to guide policy responses are often lacking, especially in countries in Eastern Europe and Central Asia. This article describes physical inactivity patterns among adults in Armenia, Azerbaijan, Belarus, Georgia, Kyrgyzstan, Republic of Moldova, Tajikistan, Turkey and Uzbekistan.
Methods
Data were collected using the Global Physical Activity Questionnaire drawing nationally representative samples of adults in each country. The national prevalence of physical inactivity was calculated as well as the proportional contribution to total physical activity (PA) during work, transport and leisure-time. An adjusted logistic regression model was applied to analyze the association of age, gender, education, household status and income with physical inactivity.
Results
National prevalence of physical inactivity ranged from 10.1% to 43.6%. The highest proportion of PA was registered during work or in the household in most countries, whereas the lowest was during leisure-time in all countries. Physical inactivity was more likely with older age in eight countries, with female gender in three countries, and with living alone in three countries. There was no clear pattern of association with education and income.
Conclusion
Prevalence of physical inactivity is heterogeneous across the region. PA during leisure-time contributes minimally to total PA in all countries. Policies and programs that increase opportunities for active travel and leisure-time PA, especially for older adults, women and people living alone will be an essential part of strategies to increase overall population PA.The authors gratefully acknowledge support from a grant from the Government of the Russian Federation in the context of the WHO European Office for the Prevention and Control of NCDs
Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout
The enormous stiffness and low density of graphene make it an ideal material
for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and
electrical readout of monolayer graphene resonators, and test their response to
changes in mass and temperature. The devices show resonances in the MHz range.
The strong dependence of the resonant frequency on applied gate voltage can be
fit to a membrane model, which yields the mass density and built-in strain.
Upon removal and addition of mass, we observe changes in both the density and
the strain, indicating that adsorbates impart tension to the graphene. Upon
cooling, the frequency increases; the shift rate can be used to measure the
unusual negative thermal expansion coefficient of graphene. The quality factor
increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing
many of the basic attributes of monolayer graphene resonators, these studies
lay the groundwork for applications, including high-sensitivity mass detectors
- …