22 research outputs found

    Hydrodynamic orienting of asymmetric microobjects under gravity

    Full text link
    It is shown that nonsymmetric microobjects orient while settling under gravity in a viscous fluid. To analyze this process, a simple shape is chosen: a non-deformable `chain'. The chain consists of two straight arms, made of touching solid spheres. In the absence of external torques, the spheres are free to spin along the arms. The motion of the chain is evaluated by solving the Stokes equations with the use of the multipole method. It is demonstrated that the spinning beads speed up sedimentation by a small amount, and increase the orientation rate significantly in comparison to the corresponding rigid chain. It is shown that chains orient towards the V-shaped stable stationary configuration. In contrast, rods and star-shaped microobjects do not rotate. The hydrodynamic orienting is relevant for efficient swimming of non-symmetric microobjects, and for sedimenting suspensions.Comment: 9 page

    Equilibrium and nonequilibrium thermodynamics of particle-stabilized thin liquid films

    Full text link
    Our recent quasi-two-dimensional thermodynamic description of thin-liquid films stabilized by colloidal particles is generalized to describe nonuniform equilibrium states of films in external potentials and nonequilibrium transport processes produced in the film by gradients of thermodynamic forces. Using a Monte--Carlo simulation method, we have determined equilibrium equations of state for a film stabilized by a suspension of hard spheres. Employing a multipolar-expansion method combined with a flow-reflection technique, we have also evaluated the short-time film-viscosity coefficients and collective particle mobility.Comment: 16 pages, 10 figure

    Dynamics of fibers in a wide microchannel

    Full text link
    Dynamics of single flexible non-Brownian fibers, tumbling in a Poiseuille flow between two parallel solid plane walls, is studied with the use of the hydromultipole numerical code, based on the multipole expansion of the Stokes equations, corrected for lubrication. It is shown that for a wide range of the system parameters, the migration rate towards the middle plane of the channel increases for fibers, which are closer to a wall, or are more flexible (less stiff), or are longer. The faster motion towards the channel center is accompanied by a slower translation along the flow and a larger fiber deformation.Comment: 9 pages, 16 figure

    Scattering series in mobility problem for suspensions

    Full text link
    The mobility problem for suspension of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering operators appearing in the scattering series. In our formulation there is only one type of single-particle scattering operator.Comment: 11 page

    Near-wall diffusion tensor of an axisymmetric colloidal particle

    Get PDF
    Hydrodynamic interactions with confining boundaries often lead to drastic changes in the diffusive behaviour of microparticles in suspensions. For axially symmetric particles, earlier numerical studies have suggested a simple form of the near-wall diffusion matrix which depends on the distance and orientation of the particle with respect to the wall, which is usually calculated numerically. In this work, we derive explicit analytical formulae for the dominant correction to the bulk diffusion tensor of an axially symmetric colloidal particle due to the presence of a nearby no-slip wall. The relative correction scales as powers of inverse wall-particle distance and its angular structure is represented by simple functions in sines and cosines of the particle’s inclination angle to the wall. We analyse the correction for translational and rotational motion, as well as the translation-rotation coupling. Our findings provide a simple approximation to the anisotropic diffusion tensor near a wall, which completes and corrects relations known from earlier numerical and theoretical findings.M.L. acknowledges support from the National Center of Science Grant No. 2012/07/N/ST3/03120. Part of the research has been conducted under a David Crighton Fellowship awarded to M.L. at the University of Cambridge, and within the Mobility Plus Fellowship awarded to M.L. by the Polish Ministry of Science and Higher Education.This is the author accepted manuscript. The final version is available from AIP Publishing via http://dx.doi.org/10.1063/1.495872

    MIGRATION OF FLEXIBLE FIBERS ENTRAINED BY POISEUILLE FLOW IN A MICROCHANNEL

    No full text
    Summary In this work, we consider a single non-Brownian mobile and flexible fiber immersed in Poiseuille flow in a channel consisting of two parallel infinite walls. The dynamics of the fiber is evaluated numerically from the Stokes equations by a multipole code HYDROMULTIPOLE. Investigating the fiber dynamics we found out that fibers migrate to a critical position across the channel. The distance between the wall and a limiting position depends on the fiber elongation and flexibility. For more stiff fibers the critical position results from the interplay between their tendency to drift away from the channel and the repulsive hydrodynamic interaction with the wall. For less stiff fibers the limiting position is not influenced by the presence of the wall. Differences between the critical position for different fibers can be used in the process of microfibers separation by the flow
    corecore