359 research outputs found

    Proper Motions of Ionized Gas at the Galactic Center: Evidence for Unbound Orbiting Gas

    Get PDF
    We present radio continuum observations of the spiral-shaped ionized feature (Sgr A West) within the inner pc of the Galactic center at three epochs spanning 1986 to 1995. The VLA A-configuration was used at λ\lambda2cm (resolution of 0\dasec1×\times0\dasec2). We detect proper motions of a number of features in the Northern and Eastern Arms of Sgr A West including the ionized gas associated with IRS 13 with V(RA)= 113 \pm 10, V(Dec)=150 \pm15 km/s, IRS 2 with V(RA)= 122 \pm 11, V(Dec)=24 \pm 34 km/s and the Norther Arm V(RA)= 126 \pm 30, V(Dec)=--207 \pm 58 km/s. We also report the detection of features having transverse velocities > 1000 km/s including a head-tail radio structure, the ``Bullet'', 4\approx4'' northwest of Sgr A^* with V(RA)= 722 \pm 156, V(Dec)=832 \pm 203 km/s, exceeding the escape velocity at the Galactic center. The proper motion measurements when combined with previous H92α\alpha radio recombination line data suggest an unambiguous direction of the flow of ionized gas orbiting the Galactic center. The measured velocity distribution suggests that the ionized gas in the Northern Arm is not bound to the Galactic center assuming a 2.5 million solar mass of dark matter residing at the Galactic center. This implies that the stellar and ionized gas systems are not dynamically coupled, thus, supporting a picture in which the gas features in the Northern Arm and its extensions are the result of an energetic phenomenon that has externally driven a cloud of gas cloud into the Galactic center.Comment: 11 pages, three figures (one color) and one table. Astrophysical Journal Letters in pres

    The properties of extragalactic radio sources selected at 20 GHz

    Full text link
    We present some first results on the variability, polarization and general properties of radio sources selected in a blind survey at 20 GHz, the highest frequency at which a sensitive radio survey has been carried out over a large area of sky. Sources with flux densities above 100 mJy in the AT20G Pilot Survey at declination -60 to -70 were observed at up to three epochs during 2002-4, including near-simultaneous measurements at 5, 8 and 18 GHz in 2003. Of the 173 sources detected, 65% are candidate QSOs, BL Lac objects or blazars, 20% galaxies and 15% faint (b > 22 mag) optical objects or blank fields. On a 1-2 year timescale, the general level of variability at 20 GHz appears to be low. For the 108 sources with good-quality measurements in both 2003 and 2004, the median variability index at 20 GHz was 6.9% and only five sources varied by more than 30% in flux density. Most sources in our sample show low levels of linear polarization (typically 1-5%), with a median fractional polarization of 2.3% at 20 GHz. There is a trend for fainter sources to show higher fractional polarization. At least 40% of sources selected at 20GHz have strong spectral curvature over the frequency range 1-20 GHz. We use a radio `two-colour diagram' to characterize the radio spectra of our sample, and confirm that the radio-source population at 20 GHz (which is also the foreground point-source population for CMB anisotropy experiments like WMAP and Planck) cannot be reliably predicted by extrapolating the results of surveys at lower frequencies. As a result, direct selection at 20 GHz appears to be a more efficient way of identifying 90 GHz phase calibrators for ALMA than the currently-proposed technique of extrapolation from all-sky surveys at 1-5 GHz.Comment: 14-page paper plus 5-page data table. Replaced with published versio

    LUNASKA simultaneous neutrino searches with multiple telescopes

    Full text link
    The most sensitive method for detecting neutrinos at the very highest energies is the lunar Cherenkov technique, which employs the Moon as a target volume, using conventional radio telescopes to monitor it for nanosecond-scale pulses of Cherenkov radiation from particle cascades in its regolith. Multiple-antenna radio telescopes are difficult to effectively combine into a single detector for this purpose, while single antennas are more susceptible to false events from radio interference, which must be reliably excluded for a credible detection to be made. We describe our progress in excluding such interference in our observations with the single-antenna Parkes radio telescope, and our most recent experiment (taking place the week before the ICRC) using it in conjunction with the Australia Telescope Compact Array, exploiting the advantages of both types of telescope.Comment: 4 pages, 4 figures, in Proceedings of the 32nd International Cosmic Ray Conference (Beijing 2011

    The Australia Telescope 20GHz (AT20G) Survey: analysis of the extragalactic source sample

    Get PDF
    The Australia Telescope 20 GHz (AT20G) survey is a blind survey of the whole Southern sky at 20 GHz with follow-up observations at 4.8, 8.6, and 20 GHz carried out with the Australia Telescope Compact Array (ATCA). In this paper we present an analysis of radio spectral properties in total intensity and polarisation, sizes, optical identifications, and redshifts of the sample of the 5808 extragalactic sources in the survey catalogue of confirmed sources over the whole Southern sky excluding the strip at Galactic latitude |b|<1.5deg. The sample has a flux density limit of 40 mJy. Completeness has been measured as a function of scan region and flux density. Averaging over the whole survey area the follow-up survey is 78% complete above 50mJy and 93% complete above 100mJy. 3332 sources with declination <-15deg have good quality almost simultaneous observations at 4.8, 8.6, and 20GHz. The spectral analysis shows that the sample is dominated by flat-spectrum sources. The fraction of flat-spectrum sources decreases from 81% for 20GHz flux densities S>500mJy, to 60% for S<100mJy. There is also a clear spectral steepening at higher frequencies with the median spectral index decreasing from -0.16 between 4.8 and 8.6GHz to -0.28 between 8.6 and 20GHz. Simultaneous observations in polarisation are available for all the sources at all the frequencies. 768 sources have a good quality detection of polarised flux density at 20GHz; 467 of them were also detected in polarisation at 4.8 and/or at 8.6GHz so that it has been possible to compare the spectral behaviour in total intensity and polarisation. We have found that the polarised fraction increases slightly with frequency and decreases with flux density. Cross matches and comparisons have been made with other catalogues at lower radio frequencies, and in the optical, X-ray and gamma-ray bands. Redshift estimates are available for 825 sources.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    Where Do Cooling Flows Cool?

    Full text link
    Although only about 5 percent of the total baryonic mass in luminous elliptical galaxies is in the form of cooled interstellar gas, it is concentrated within the optical effective radius r_e where it influences the local dynamical mass. The mass of cooled gas must be spatially distributed since it greatly exceeds the masses of central black holes. We explore here the proposition that a population of low mass, optically dark stars is created from the cooled gas. We consider a wide variety of radial distributions for the interstellar cooling, but only a few are consistent with observed X-ray surface brightness profiles. In a region of concentrated interstellar cooling, the X-ray emission can exceed that observed, suggesting the presence of additional support by magnetic stresses or non-thermal pressure. In general we find that the mass of cooled gas contributes significantly to stellar dynamical mass to light ratios which vary with galactic radius. If the stars formed from cooled interstellar gas are optically luminous, their influence on the the mass to light ratio would be reduced. The mass of cooled gas inside r_e is sensitive to the rate that old stars lose mass, which is nearly independent of the initial mass function of the old stellar population.Comment: 18 pages with 6 figures; accepted by Astrophysical Journa
    corecore