4 research outputs found

    MoO3 nanowire growth on VO2/WO3 for thermochromic applications

    No full text
    This study explores the structural, electronic, and optical properties of sandwich-structured thin films composed of WO3, MoWO3, and MoO3 as window layers on VO2/WO3 via a physical vapor deposition method. Morphological analysis demonstrates the evolution of distinct nanowires, offering insights into the lattice strain of the VO2 layer toward high-performance thermochromatic devices. Temperature-dependent sheet resistivity is investigated, showcasing significant improvements in conductivity for samples with MoO3 as a window layer. The electrical and optical properties of the MoO3/VO2/WO3 device showed a phase transition temperature (Tc) of 36.8 °C, a transmittance luminous (Tlum) of 54.57%, and a solar modulation ability (ΔTsol) of 12.43. This comprehensive analysis contributes to understanding the growth of nanowires on multi-layered thin films, offering valuable insights into potential applications in bright windows.Dynamics of Micro and Nano System

    Positive and Negative Photoconductivity in Ir Nanofilm-Coated MoO3 Bias-Switching Photodetector

    No full text
    In this study, we delved into the influence of Ir nanofilm coating thickness on the optical and optoelectronic behavior of ultrathin MoO3 wafer-scale devices. Notably, the 4 nm Ir coating showed a negative Hall voltage and high carrier concentration of 1.524 × 1019 cm−3 with 0.19 nm roughness. Using the Kubelka–Munk model, we found that the bandgap decreased with increasing Ir thickness, consistent with Urbach tail energy suggesting a lower level of disorder. Regarding transient photocurrent behavior, all samples exhibited high stability under both dark and UV conditions. We also observed a positive photoconductivity at bias voltages of >0.5 V, while at 0 V bias voltage, the samples displayed a negative photoconductivity behavior. This unique aspect allowed us to explore self-powered negative photodetectors, showcasing fast response and recovery times of 0.36/0.42 s at 0 V. The intriguing negative photoresponse that we observed is linked to hole self-trapping/charge exciton and Joule heating effects.Dynamics of Micro and Nano System

    Graphene oxide nanocellulose composite as a highly efficient substrate-free room temperature gas sensor

    No full text
    This study introduces the development of novel, flexible gas sensors operating at room temperature (RT), utilizing a graphene oxide (GO) via the modified Hummers' method and bacterial nanocellulose (BNC) composite to enhance gas detection in industrial and environmental settings. The composite materials, denoted as GO@BNC, were synthesized with varying GO concentrations ranging from 2 % to 30 %, aiming to investigate their responsiveness to gases such as carbon dioxide (CO2), oxygen (O2), acetone (Ac), and ethanol (Eth). The prepared nanomaterials were characterized using FT-IR, Raman, TGA, SEM, and AFM techniques. The bandgap of Go ranges from 4.19, 3.47, 3.16, 2.79, and 2.48 eV for 2, 5, 10, 20, and 30 % GO concentrations, respectively. Notably, the sensor containing wt % of 20 % GO concentration exhibited remarkable sensitivity to Ac, achieving a 270 % increase in resistance at a concentration of 250 μL/L. Conversely, the sensor with a wt % of 30 % GO composition showed superior sensitivity to Eth, with a 420 % signal enhancement under similar conditions. Further modification of GO@BNC through mild reduction resulted in the formation of reduced graphene oxide (rGO@BNC) composites intended to assess the functional groups' impact on sensing performance. Our findings underscore the potential of GO@BNC composites as sustainable and efficient materials for fabricating eco-friendly flexible gas sensors and devices for detecting organic compounds.Dynamics of Micro and Nano System

    Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing

    No full text
    Surface plasmon technology is regarded as having significant potential for the enhancement of the performance of 2D oxide semiconductors, especially in terms of improving the light absorption of 2D MoO3 photodetectors. An ultrathin MoO3/Ir/SiO2/Si heterojunction Schottky self-powered photodetector is introduced here to showcase positive photoconductivity. In wafer-scale production, the initial un-annealed Mo/2 nm Ir/SiO2/Si sample displays a sheet carrier concentration of 5.76 × 1011/cm², which subsequently increases to 6.74 × 1012/cm² after annealing treatment, showing a negative photoconductivity behavior at a 0 V bias voltage. This suggests that annealing enhances the diffusion of Ir into the MoO3 layer, resulting in an increased phonon scattering probability and, consequently, an extension of the negative photoconductivity behavior. This underscores the significance of negative photoconductive devices in the realm of optoelectronic applications.Dynamics of Micro and Nano System
    corecore