5 research outputs found
The comparision of glybenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing
Wound dressings made from natural polymers are an important aspect of biomaterials. Protein-based materials are less likely to instigate an immunogenic response and have the capacity to degrade in vivo, also without triggering an inflammatory response. Therefore, gelatin (GEL) was chosen and combined with bacterial cellulose (BC) to produce nanofibres and the potential of an all-natural polymer construct was determined. GEL and BC were successfully electrospun with metformin (Met) and glybenclamide (Gb) using a portable, point of need electrospinning set up. The virgin fibre group exhibited a significant effect on the proliferation of L929 (mouse fibroblast) cells but all fibre samples can safely be applied on wound site without risk of cytotoxicity. According to the results obtained by animal tests, the GEL-BC-Gb group showed better recovery than the GEL-BC-Met group. Diabetic wounds treated with GEL-BC-Met were characterized by moderate re-epithelialization and partially organized granulation tissue. Moderate to complete re-epithelialization and well-formed granulation tissue were observed in diabetic wounds treated with GEL-BC-Gb. The histologic scores obtained on day 14 confirmed that the GEL-BC-Gb group played a stronger wound-healing role compared to the GEL-BC-Met group. The highest decrease of TNF-α level was observed in the GEL-BC-Gb group at the end of the experiment but there is no significant difference between drug-loaded fibre groups. Therefore, topical administration of Met and Gb in a sustained release form has a high potential for diabetic wound healing with high bioavailability and fewer systemic side effects but Gb showed better improvement according to the results of the animal tests
Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study
The combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also
exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into
chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL
composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing
effect. The combination therapies significantly accelerated diabetic wound healing in type-1
diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better
regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory
cell infiltration and edema. The formation of the hair follicles started in 14 days only in the
combination therapy and lower proinflammatory cytokine levels were observed compared to single
drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity
of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and
suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the
proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded
chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability,
fewer systemic side effects, and reduced frequency of dosage and amount of drug