819 research outputs found
A Multi-Gene Genetic Programming Application for Predicting Students Failure at School
Several efforts to predict student failure rate (SFR) at school accurately
still remains a core problem area faced by many in the educational sector. The
procedure for forecasting SFR are rigid and most often times require data
scaling or conversion into binary form such as is the case of the logistic
model which may lead to lose of information and effect size attenuation. Also,
the high number of factors, incomplete and unbalanced dataset, and black boxing
issues as in Artificial Neural Networks and Fuzzy logic systems exposes the
need for more efficient tools. Currently the application of Genetic Programming
(GP) holds great promises and has produced tremendous positive results in
different sectors. In this regard, this study developed GPSFARPS, a software
application to provide a robust solution to the prediction of SFR using an
evolutionary algorithm known as multi-gene genetic programming. The approach is
validated by feeding a testing data set to the evolved GP models. Result
obtained from GPSFARPS simulations show its unique ability to evolve a suitable
failure rate expression with a fast convergence at 30 generations from a
maximum specified generation of 500. The multi-gene system was also able to
minimize the evolved model expression and accurately predict student failure
rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap
with arXiv:1403.0623 by other author
Heating of the IGM
Using the cosmic virial theorem, Press-Schechter analysis and numerical
simulations, we compute the expected X-ray background (XRB) from the diffuse
IGM with the clumping factor expected from gravitational shock heating. The
predicted fluxes and temperatures are excluded from the observed XRB. The
predicted clumping can be reduced by entropy injection. The required energy is
computed from the two-point correlation function, as well as from
Press-Schechter formalisms. The minimal energy injection of 1 keV/nucleon
excludes radiative or gravitational heating as a primary energy source. We
argue that the intergalactic medium (IGM) must have been heated through violent
processes such as massive supernova bursts. If the heating proceeded through
supernova explosions, it likely proceeded in bursts which may be observable in
high redshift supernova searches. Within our model we reproduce the observed
cluster luminosity-temperature relation with energy injection of 1 keV/nucleon
if this injection is assumed to be uncorrelated with the local density. These
parameters predict that the diffuse IGM soft XRB has a temperature of ~1 keV
with a flux near 10 keV/cm^2 s str keV, which may be detectable in the near
future.Comment: to appear in ApJ Lett., 11 pages incl 1 figur
A halo expansion technique for approximating simulated dark matter haloes
We apply a basis function expansion method to create a time-evolving density/potential approximation of the late growth of simulated N-body dark matter haloes. We demonstrate how the potential of a halo from the Aquarius Project can be accurately represented by a small number of basis functions, and show that the halo expansion (HEX) method provides a way to replay simulations. We explore the level of accuracy of the technique as well as some of its limitations. We find that the number of terms included in the expansion must be large enough to resolve the large-scale distribution and shape of the halo but, beyond this, additional terms result in little further improvement. Particle and subhalo orbits can be integrated in this realistic, time-varying halo potential approximation, at much lower cost than the original simulation, with high fidelity for many individual orbits, and a good match to the distributions of orbital energy and angular momentum. Statistically, the evolution of structural subhalo properties, such as mass, half-mass radius and characteristic circular velocity, are very well reproduced in the HEX approximation over several Gyr. We demonstrate an application of the technique by following the evolution of an orbiting subhalo at much higher resolution than can be achieved in the original simulation. Our method represents a significant improvement over commonly used techniques based on static analytical descriptions of the halo potential
Assessment of Workersâ Level of Exposure to Work-Related Musculoskeletal Discomfort in Dewatered Cassava Mash Sieving Process
This study was undertaken to assess the level of exposure of processors to work-related musculoskeletal disorder when using the locally developed traditional sieve in the sieving process. Quick ergonomic checklist (QEC) involving the researcherâs and the processorsâ assessment using the risk assessment checklist, was used in this assessment and data was obtained from a sample of one hundred and eight (108) processors randomly selected from three senatorial districts of Rivers State. Thirty-six processors from each zone comprising of 14 males and 22 females, were selected., and assessed on the bases of their back, shoulder/arm, wrist/hand and neck posture and frequency of movement during traditional sieving process. The result of the assessment showed that the highest risk of discomfort occurred at the region of the wrist/hand, followed by back, shoulder/arm, and neck. The posture used in the sieving process exposed the processors, not only to the discomfort of pain but also put them at high risk of musculoskeletal disorder at indicated by a high level of percentage exposure of 66% QEC rating. The result indicated a need for immediate attention and change to an improved method that will reduce the discomfort on the body parts assessed. identified parts
Mass of Clusters in Simulations
We show that dark matter haloes, in n--body simulations, have a boundary
layer (BL) with precise features. In particular, it encloses all dynamically
stable mass while, outside it, dynamical stability is lost soon. Particles can
pass through such BL, which however acts as a confinement barrier for dynamical
properties. BL is set by evaluating kinetic and potential energies (T(r) and
W(r)) and calculating R=-2T/W. Then, on BL, R has a minimum which closely
approaches a maximum of w= -dlog W/dlog r. Such ``requirement'' is
consistent with virial equilibrium, but implies further regularities. We test
the presence of a BL around haloes in spatially flat CDM simulations, with or
without cosmological constant. We find that the mass M_c, enclosed within the
radius r_c, where the requirement is fulfilled, closely approaches the
mass M_{dyn}, evaluated from the velocities of all particles within r_c,
according to the virial theorem. Using r_c we can then determine an individual
density contrast Delta_c for each virialized halo, which can be compared with
the "virial" density contrast (Omega_m: matter
density parameter) obtained assuming a spherically symmetric and unperturbed
fluctuation growth. The spread in Delta_c is wide, and cannot be neglected when
global physical quantities related to the clusters are calculated, while the
average Delta_c is ~25 % smaller than the corresponding Delta_v; moreover if
is defined from the radius linked to Delta_v, we have a much worse
fit with particle mass then starting from {\it Rw} requirement.Comment: 4 pages, 5 figures, contribution to the XXXVIIth Rencontres de
Moriond, The Cosmological Model, Les Arc March 16-23 2002, to appear in the
proceeding
An Evolving Entropy Floor in the Intracluster Gas?
Non-gravitational processes, such as feedback from galaxies and their active
nuclei, are believed to have injected excess entropy into the intracluster gas,
and therefore to have modified the density profiles in galaxy clusters during
their formation. Here we study a simple model for this so-called preheating
scenario, and ask (i) whether it can simultaneously explain both global X-ray
scaling relations and number counts of galaxy clusters, and (ii) whether the
amount of entropy required evolves with redshift. We adopt a baseline entropy
profile that fits recent hydrodynamic simulations, modify the hydrostatic
equilibrium condition for the gas by including approx. 20% non-thermal pressure
support, and add an entropy floor K_0 that is allowed to vary with redshift. We
find that the observed luminosity-temperature (L-T) relations of low-redshift
(z=0.05) HIFLUGCS clusters and high-redshift (z=0.8) WARPS clusters are best
simultaneously reproduced with an evolving entropy floor of
K_0(z)=341(1+z)^{-0.83}h^{-1/3} keV cm^2. If we restrict our analysis to the
subset of bright (kT > 3 keV) clusters, we find that the evolving entropy floor
can mimic a self-similar evolution in the L-T scaling relation. This degeneracy
with self-similar evolution is, however, broken when (0.5 < kT < 3 keV)
clusters are also included. The approx. 60% entropy increase we find from z=0.8
to z=0.05 is roughly consistent with that expected if the heating is provided
by the evolving global quasar population. Using the cosmological parameters
from the WMAP 3-year data with sigma_8=0.76, our best-fit model underpredicts
the number counts of the X-ray galaxy clusters compared to those derived from
the 158 deg^2 ROSAT PSPC survey. Treating sigma_8 as a free parameter, we find
a best-fit value of sigma_8=0.80+/- 0.02.Comment: 14 emulateapj pages with 9 figures, submitted to Ap
The Axis-Ratio Distribution of Galaxy Clusters in the SDSS-C4 Catalog as a New Cosmological Probe
We analyze the C4 catalog of galaxy clusters from the Sloan Digital Sky
Survey (SDSS) to investigate the axis-ratio distribution of the projected two
dimensional cluster profiles. We consider only those objects in the catalog
whose virial mass is close to 10^{14}h^{-1}M_{sun}, with member galaxies within
the scale radius 1000 kpc. The total number of such objects turns out to be
336. We also derive a theoretical distribution by incorporating the effect of
projection onto the sky into the analytic formalism proposed recently by Lee,
Jing, & Suto. The theoretical distribution of the cluster axis-ratios is shown
to depend on the amplitude of the linear power spectrum (sigma_8) as well as
the density parameter (Omega_{m}). Finally, fitting the observational data to
the analytic distribution with Omega_{m} and sigma_{8} as two adjustable free
parameters, we find the best-fitting value of sigma_{8}=(1.01 +/-
0.09)(Omega_{m}/0.6)^{(0.07 +/- 0.02) +0.1 Omega_{m}}$. It is a new
sigma_{8}-Omega_{m} relation, different from the previous one derived from the
local abundance of X-ray clusters. We expect that the axis-ratio distribution
of galaxy clusters, if combined with the local abundance of clusters, may put
simultaneous constraints on sigma_{8} and Omega_{m}.Comment: accepted for publication in ApJ, 17 pages, 3 figures, improved
analysis, more discussion on the validity and the caveats of the mode
The Population of Dark Matter Subhaloes: Mass Functions and Average Mass Loss Rates
Using a cosmological N-Body simulation and a sample of re-simulated
cluster-like haloes, we study the mass loss rates of dark matter subhaloes, and
interpret the mass function of subhaloes at redshift zero in terms of the
evolution of the mass function of systems accreted by the main halo progenitor.
When expressed in terms of the ratio between the mass of the subhalo at the
time of accretion and the present day host mass the unevolved subhalo mass
function is found to be universal. However, the subhalo mass function at
redshift zero clearly depends on , in that more massive host haloes host
more subhaloes. To relate the unevolved and evolved subhalo mass functions, we
measure the subhalo mass loss rate as a function of host mass and redshift. We
find that the average, specific mass loss rate of dark matter subhaloes depends
mainly on redshift. These results suggest a pleasingly simple picture for the
evolution and mass dependence of the evolved subhalo mass function. Less
massive host haloes accrete their subhaloes earlier, which are thus subjected
to mass loss for a longer time. In addition, their subhaloes are typically
accreted by denser hosts, which causes an additional boost of the mass loss
rate. To test the self-consistency of this picture, we use a merger trees
constructed using the extended Press-Schechter formalism, and evolve the
subhalo populations using the average mass loss rates obtained from our
simulations, finding the subhalo mass functions to be in good agreement with
the simulations. [abridged]Comment: 12 pages, 12 figures; submitted to MNRA
Bis(acetonitrile-kN)dichlorido(hâŽ-cycloocta- 1,5-diene)ruthenium(II) acetonitrile monosolvate
Please refer to full text to view abstrac
- âŠ