18 research outputs found
Half-Time Strategies to Enhance Second-Half Performance in Team-Sports Players: A Review and Recommendations
The competitive demands of numerous intermittent team sports require that two consecutive periods of play are separated by a half-time break. Typically, half-time allows players to: return to the changing rooms, temporarily relax from the cognitive demands of the first half of match-play, rehydrate, re-fuel, attend to injury or equipment concerns, and to receive tactical instruction and coach feedback in preparation for the second half. These passive practices have been associated with physiological changes which impair physical and cognitive performance in the initial stages of the second half. An increased risk of injury has also been observed following half-time. On the day of competition, modification of half-time practices may therefore provide Sports Scientists and Strength and Conditioning Coaches with an opportunity to optimise second half performance. An overview of strategies that may benefit team sports athletes is presented; specifically, the efficacy of: heat maintenance strategies (including passive and active methods), hormonal priming (through video feedback), post-activation potentiation, and modified hydro-nutritional practices are discussed. A theoretical model of applying these strategies in a manner that compliments current practice is also presented
Recombinant human erythropoietin in sports: a review
Erythropoietin is an endogenous hormone of glicoproteic nature secreted by the kidneys and is the main regulator of the erythropoiesis. An alteration in its production generates a disturbance in the plasmatic concentration giving rise to several types of pathologies related to the hematopoietic system. The recombinant forms of erythropoietin have indiscriminately been used by athletes, mainly in endurance sports, by increasing the erythrocytes concentration, generating a better delivery of oxygen to the muscle tissue. The administration of recombinant erythropoietin was prohibited by the International Olympic Committee and its use considered as doping. This review has the intention to describe the physical, biological and pharmacokinetic properties of the endogenous erythropoietin, as well as its recombinant form, describing also its use in sports and the process of searching methodologies for its detection in doping control
Avian transcriptomics: opportunities and challenges
Recent developments in next-generation sequencing technologies have greatly facilitated the study of whole transcriptomes in model and non-model species. Studying the transcriptome and how it changes across a variety of biological conditions has had major implications for our understanding of how the genome is regulated in different contexts, and how to interpret adaptations and the phenotype of an organism. The aim of this review is to highlight the potential of these new technologies for the study of avian transcriptomics, and to summarise how transcriptomics has been applied in ornithology. A total of 81 peer-reviewed scientific articles that used transcriptomics to answer questions within a broad range of study areas in birds are used as examples throughout the review. We further provide a quick guide to highlight the most important points which need to be take into account when planning a transcriptomic study in birds, and discuss how researchers with little background in molecular biology can avoid potential pitfalls. Suggestions for further reading are supplied throughout. We also discuss possible future developments in the technology platforms used for ribonucleic acid sequencing. By summarising how these novel technologies can be used to answer questions that have long been asked by ornithologists, we hope to bridge the gap between traditional ornithology and genomics, and to stimulate more interdisciplinary research.publishe
Modelling Movement Energetics Using Global Positioning System Devices in Contact Team Sports: Limitations and Solutions
Quantifying the training and competition loads of players in contact team sports can be performed in a variety of ways, including kinematic, perceptual, heart rate or biochemical monitoring methods. Whilst these approaches provide data relevant for team sports practitioners and athletes, their application to a contact team sport setting can sometimes be challenging or illogical. Furthermore, these methods can generate large fragmented datasets, do not provide a single global measure of training load and cannot adequately quantify all key elements of performance in contact team sports. A previous attempt to address these limitations via the estimation of metabolic energy demand (global energy measurement) has been criticised for its inability to fully quantify the energetic costs of team sports, particularly during collisions. This is despite the seemingly unintentional misapplication of the model’s principles to settings outside of its intended use. There are other hindrances to the application of such models, which are discussed herein, such as the data-handling procedures of Global Position System manufacturers and the unrealistic expectations of end users. Nevertheless, we propose an alternative energetic approach, based on Global Positioning System-derived data, to improve the assessment of mechanical load in contact team sports. We present a framework for the estimation of mechanical work performed during locomotor and contact events with the capacity to globally quantify the work done during training and matches