1,100 research outputs found

    Integral manifolds for slow-fast differential systems loosing their attractivity in time

    Get PDF
    The work is devoted to the investigation of the integral manifolds of the nonautonomous slow-fast systems, which change their attractivity in time. The method used here is based on gluing attractive and repulsive integral manifolds by using an additional function

    Hydrobiological investigations in the Lena Delta in summer 2003

    Get PDF

    Participation in environmental decision-making processes within the discourse of representative democracy

    Get PDF
    The essay investigates whether the discourse of representative democracy provides enough space for public participation in environmental decision-making. Based on the case study of Stuttgart 21 – a large-scale reconstruction of the train station in the German city of Stuttgart – the citizens understanding of participation and representative democracy is analyzed. With regards to the related theoretical frames of Habermas, Dahl, and others the applied critical discourse analysis carries out the existence of two main discourses: The discourse of formal representative democracy as well as the discourse of lifeworld representative democracy. Taking into account the hegemonic order of discourse the essay concludes that there is enough space for public participation but it affects the social reality in the way that the decisions are not legitimate and therefore it has certain negative impact on the political system in general. As it is shown based on the analysis the discourse of representative democracy need to be further developed. Procedures like the Stuttgart 21 arbitration as well as the claim for referendums could provide valuable grounds for further considerations and to some extend offer a concrete application of deliberative democracy

    Seasonal progression of active-layer thickness dependent on microrelief

    Get PDF
    Introduction Active-layer thickness is a major factor for all physical and biological processes in permafrost soils. It is closely related to the fluxes of energy, water and carbon between permafrost landscapes and the atmosphere. Active-layer thickness is mainly driven by air temperature, but also influenced by snow cover, summer rainfall, soil properties and vegetation characteristics (Nelson et al., 1998). The typical polygonal tundra of the Lena Delta is characterised by a pronounced microrelief, which causes a high small-scale heterogeneity of soil and vegetation properties. Consequently, also the active-layer thickness varies substantially across small lateral distances of decimetres to metres. In order to up-scale results of process studies to the landscape scale, a quantification of the heterogeneity of active-layer thickness is of great interest

    Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives

    Get PDF
    The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review’s next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.Fil: Montiel Schneider, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Martín, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Otarola, Jessica Johana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Vakarelska, Ekaterina. University of Sofia; BulgariaFil: Simeonov, Vasil. University of Sofia; BulgariaFil: Lassalle, Verónica Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Nedyalkova, Miroslava. University of Sofia; Bulgari

    Correlation of Structural and Magnetic Properties of RFeO3 (R=Dy, Lu)

    Full text link
    In orthoferrites the rare-earth (R) ion has a big impact on structural and magnetic properties in particular the ionic size influences the octahedral tilt and the R3+- Fe3+ interaction modifies properties like the spin reorientation. Growth induced strain in thin films is another means to modify materials properties since the sign of strain affects the bond length and therefore directly the orbital interaction. Our study focuses on epitaxially grown (010) oriented DyFeO3 and LuFeO3 thin films, thereby investigating the impact of compressive lattice strain on the magnetically active Dy3+ and magnetically inactive Lu3+ compared to uniaxially strained single crystal DyFeO3. The DyFeO3 films exhibits a shift of more than 20K in spin-reorientation temperatures, maintain the antiferromagnetic {\Gamma}4 phase of the Fe-lattice below the spin reorientation, and show double step hysteresis loops for both in-plane directions between 5 K and 390 K. This is the signature of an Fe-spin induced ferromagnetic Dy3+ lattice above the N\'eel temperature of the Dy. The observed shift in the film spin reorientation temperatures vs lattice strain is in good agreement with isostatic single crystal neutron diffraction experiments with a rate of 2 K/ kbar bar.Comment: 18 pages, 5 Figure

    Strain-engineering of the charge and spin-orbital interactions in Sr2IrO4

    Get PDF
    In the high spin-orbit coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent Resonant Inelastic X-ray Scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven crossover from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information towards the control of the ground state of complex oxides in the presence of high spin-orbit coupling.Comment: Published in Proceedings of the National Academy of Sciences, September 202

    Integrating energy and wind performance reasoning in urban form type design for an educational district in Singapore

    Get PDF
    Climate emergency urges the reduction of CO2 emissions. Energy is the major contributor to climate change, and the building sector accounts for a large share of rising global energy consumption. Previous research has shown a strong interplay between urban form and energy consumption. The transition towards net-zero cities is challenged by the space required for renewable energy production, especially in a dense urban context such as Singapore. This study investigates the relationships between the urban morphology characteristics and the energy performance of educational districts in the tropical climate of Singapore, using simulation-based parametric geometric modelling as a method. We based morphological properties on an analysis of existing educational urban quarters in Singapore and related literature on energy-driven urban design in tropical climates. Based on that, a parametric model for a new hybrid typology was created to evaluate different configurations of it using urban energy and wind simulations to inform the design process. The scenario with the best performance was developed further and applied to a case study site in Singapore. The findings of this study could inform planning processes where design decisions can influence, or are driven by, energy performance and energy-driven design concepts
    • …
    corecore