3 research outputs found
DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results
<p>Abstract</p> <p>Background</p> <p>Systems biology research and applications require creation, validation, extensive usage of mathematical models and visualization of simulation results by end-users. Our goal is to develop novel method for visualization of simulation results and implement it in simulation software package equipped with the sophisticated mathematical and computational techniques for model development, verification and parameter fitting.</p> <p>Results</p> <p>We present mathematical simulation workbench DBSolve Optimum which is significantly improved and extended successor of well known simulation software DBSolve5. Concept of "dynamic visualization" of simulation results has been developed and implemented in DBSolve Optimum. In framework of the concept graphical objects representing metabolite concentrations and reactions change their volume and shape in accordance to simulation results. This technique is applied to visualize both kinetic response of the model and dependence of its steady state on parameter. The use of the dynamic visualization is illustrated with kinetic model of the Krebs cycle.</p> <p>Conclusion</p> <p>DBSolve Optimum is a user friendly simulation software package that enables to simplify the construction, verification, analysis and visualization of kinetic models. Dynamic visualization tool implemented in the software allows user to animate simulation results and, thereby, present them in more comprehensible mode. DBSolve Optimum and built-in dynamic visualization module is free for both academic and commercial use. It can be downloaded directly from <url>http://www.insysbio.ru</url>.</p
Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects
This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate dehydrogenase and α-ketoglutarate dehydrogenase by salicylate contributes substantially to the cumulative inhibition of the Krebs cycle by salicylates. Uncoupling of oxidative phosphorylation has little effect and coenzyme A consumption in salicylates transformation processes has an insignificant effect on the rate of substrate oxidation in the Krebs cycle. It is found that the salicylate-inhibited Krebs cycle flux can be increased by flux redirection through addition of external glutamate and malate, and depletion in external α-ketoglutarate and glycine concentrations