18 research outputs found

    Genetic alterations in Thai adult patients with acute myeloid leukemia and myelodysplastic syndrome—excess blasts detected by next-generation sequencing technique

    No full text
    Several molecular aberrations affect the prognosis of patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) with excess blasts (EB). This study aimed to determine the incidence and clinical impact of molecular genetic aberrations in Thai patients with AML and MDS-EB, detected by the next-generation sequencing (NGS) technique. This prospective, observational study was conducted between 2018 and 2020 on newly diagnosed Thai AML or MDS-EB patients aged above 15 years. NGS was performed using a custom amplicon-based targeted enrichment assay for 42 genes recurrently mutated in myeloid neoplasms. The molecular results were correlated with baseline patient and disease characteristics as well as outcomes. Forty-nine patients were enrolled in this study. The median age was 56 years (interquartile range [IQR], 44-64), with nearly equal proportions of males and females. The median number of mutations was 3 (IQR, 2-4). The most frequent alterations were FLT3 internal tandem duplications (ITD) (28.6%), DNMT3A (24.5%), and WT1 (22.4%) mutations. FLT3-ITD was more frequent in the de novo AML group than in the MDS/secondary AML group, whereas in the MDS/secondary AML group, ASXL1, ETV6, and SRSF2 mutations were more frequent. Patients aged greater than 65 years and patients with mutated TP53 were more likely to have inferior overall survival from multivariate analysis. FLT3-ITD was the most common mutation among newly diagnosed Thai AML patients. TP53 mutation and advanced age were independent adverse factors for survival outcome. The genetic landscapes of AML patients vary between national populations. Thai Clinical Trials Registry identifier: TCTR20190227003

    Recent Advances in Arctic Ocean Studies Employing Models from the Arctic Ocean Model Intercomparison Project

    Get PDF
    Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume and extent have decreased, permafrost has thawed, storminess has increased, sea level has risen, coastal erosion has progressed, and biological processes have become more complex and diverse. In addition, there are socio-economic impacts of Arctic environmental change on Arctic residents and the world, associated with tourism, oil and gas exploration, navigation, military operations, trade, and industry. This paper discusses important results of the Arctic Ocean Model Intercomparison Project, which is advancing the role of numerical modeling in Arctic Ocean and sea ice research by stimulating national and international synergies for high-latitude research
    corecore