9 research outputs found

    Towards targeted colorectal cancer biopsy based on tissue morphology assessment by compression optical coherence elastography

    Get PDF
    Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young’s modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer – low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors

    Intraoperative Assessment of Breast Cancer Tissues after Breast-Conserving Surgery Based on Mapping the Attenuation Coefficients in 3D Cross-Polarization Optical Coherence Tomography

    No full text
    Intraoperative differentiation of tumorous from non-tumorous tissue can help in the assessment of resection margins in breast cancer and its response to therapy and, potentially, reduce the incidence of tumor recurrence. In this study, the calculation of the attenuation coefficient and its color-coded 2D distribution was performed for different breast cancer subtypes using spectral-domain CP OCT. A total of 68 freshly excised human breast specimens containing tumorous and surrounding non-tumorous tissues after BCS was studied. Immediately after obtaining structural 3D CP OCT images, en face color-coded attenuation coefficient maps were built in co-(Att(co)) and cross-(Att(cross)) polarization channels using a depth-resolved approach to calculating the values in each A-scan. We determined spatially localized signal attenuation in both channels and reported ranges of attenuation coefficients to five selected breast tissue regions (adipose tissue, non-tumorous fibrous connective tissue, hyalinized tumor stroma, low-density tumor cells in the fibrotic tumor stroma and high-density clusters of tumor cells). The Att(cross) coefficient exhibited a stronger gain contrast of studied tissues compared to the Att(co) coefficient (i.e., conventional attenuation coefficient) and, therefore, allowed improved differentiation of all breast tissue types. It has been shown that color-coded attenuation coefficient maps may be used to detect inter- and intra-tumor heterogeneity of various breast cancer subtypes as well as to assess the effectiveness of therapy. For the first time, the optimal threshold values of the attenuation coefficients to differentiate tumorous from non-tumorous breast tissues were determined. Diagnostic testing values for Att(cross) coefficient were higher for differentiation of tumor cell areas and tumor stroma from non-tumorous fibrous connective tissue: diagnostic accuracy was 91–99%, sensitivity—96–98%, and specificity—87–99%. Att(co) coefficient is more suitable for the differentiation of tumor cell areas from adipose tissue: diagnostic accuracy was 83%, sensitivity—84%, and specificity—84%. Therefore, the present study provides a new diagnostic approach to the differentiation of breast cancer tissue types based on the assessment of the attenuation coefficient from real-time CP OCT data and has the potential to be used for further rapid and accurate intraoperative assessment of the resection margins during BCS

    Compression Optical Coherence Elastography for Assessing Elasticity of the Vaginal Wall under Prolapse after Neodymium Laser Treatment

    No full text
    Early stages of pelvic organ prolapses are mainly associated with the pelvic floor disfunction as a result of elasticity changes in the connective tissues including the vaginal wall. In this study, for the first time we used a compression optical coherence elastography (C-OCE) method for assessing elasticity of the vaginal wall under prolapse conditions after intravaginal neodymium (Nd:YAG) laser treatment. C-OCE was used for a comparative ex vivo study of vaginal wall average values of stiffness (elastic Young’s modulus) in patients with age norm (n = 6), stage I–II prolapse (n = 5) without treatment and stage I–II prolapse post 1–2 months Nd:YAG laser treatment (n = 10). To verify the C-OCE data, the structural features of the submucosal connective tissue were identified morphometrically by Van Gieson staining using quantitative textural analysis of the state of collagen bundles. The results of a comparative evaluation of C-OCE and histological images demonstrate a statistically significant tissue stiffness decrease in vaginal wall prolapse compared to the age norm (73.5 ± 18.9 kPa vs. 233.5 ± 48.3 kPa; p p < 0.05), which was associated with an increase in the local thickness of the collagen bundles, a change in their orientation, and an increase in the uniformity of their arrangement. The obtained results indicate that the C-OCE can be a robust method for detecting the early stages of vaginal wall prolapse and assessing the elastic modulus increase in the vaginal wall after laser treatment

    Depth-Resolved Attenuation Mapping of the Vaginal Wall under Prolapse and after Laser Treatment Using Cross-Polarization Optical Coherence Tomography: A Pilot Study

    No full text
    Vaginal wall prolapse is the most common type of pelvic organ prolapse and is mainly associated with collagen bundle changes in the lamina propria. Neodymium (Nd:YAG) laser treatment was used as an innovative, minimally invasive and non-ablative procedure for the treatment of early-stage vaginal wall prolapse. The purpose of this pilot study was to assess connective tissue changes in the vaginal wall under prolapse without treatment and after Nd:YAG laser treatment using cross-polarization optical coherence tomography (CP OCT) with depth-resolved attenuation mapping. A total of 26 freshly excised samples of vaginal wall from 26 patients with age norm (n = 8), stage I–II prolapses without treatment (n = 8) and stage I–II prolapse 1–2 months after Nd:YAG laser treatment (n = 10) were assessed. As a result, for the first time, depth-resolved attenuation maps of the vaginal wall in the B-scan projection in the co- and cross-polarization channels were constructed. Two parameters within the lamina propria were target calculated: the median value and the percentages of high (≥4 mm−1) and low (−1) attenuation coefficient values. A significant (p p < 0.0001) increase in the parameters compared to the normal level was also observed. Notably, in the cross-channel, both parameters showed a greater difference between the groups than in the co-channel. Therefore, using the cross-channel achieved more reliable differentiation between the groups. To conclude, attenuation coefficient maps allow visualization and quantification of changes in the condition of the connective tissue of the vaginal wall. In the future, CP OCT could be used for in vivo detection of early-stage vaginal wall prolapse and for monitoring the effectiveness of treatment

    Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues

    No full text
    In this paper, we point out some practical obstacles arising in realization of compressional optical coherence elastography (OCE) that have not attracted sufficient attention previously. Specifically, we discuss (i) complications in quantification of the Young modulus of tissues related to partial adhesion between the OCE probe and soft intervening reference layer sensor, (ii) distorting influence of tissue surface curvature/corrugation on the subsurface strain distribution mapping, (iii) ways of signal-to-noise ratio (SNR) enhancement in OCE strain mapping when periodic averaging is not realized, and (iv) potentially significant influence of tissue elastic nonlinearity on quantification of its stiffness. Potential practical approaches to mitigate the effects of these complications are also described

    Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography

    No full text
    Abstract We present a non-invasive (albeit contact) method based on Optical Coherence Elastography (OCE) enabling the in vivo segmentation of morphological tissue constituents, in particular, monitoring of morphological alterations during both tumor development and its response to therapies. The method uses compressional OCE to reconstruct tissue stiffness map as the first step. Then the OCE-image is divided into regions, for which the Young’s modulus (stiffness) falls in specific ranges corresponding to the morphological constituents to be discriminated. These stiffness ranges (characteristic "stiffness spectra") are initially determined by careful comparison of the "gold-standard" histological data and the OCE-based stiffness map for the corresponding tissue regions. After such pre-calibration, the results of morphological segmentation of OCE-images demonstrate a striking similarity with the histological results in terms of percentage of the segmented zones. To validate the sensitivity of the OCE-method and demonstrate its high correlation with conventional histological segmentation we present results obtained in vivo on a murine model of breast cancer in comparative experimental study of the efficacy of two antitumor chemotherapeutic drugs with different mechanisms of action. The new technique allowed in vivo monitoring and quantitative segmentation of (1) viable, (2) dystrophic, (3) necrotic tumor cells and (4) edema zones very similar to morphological segmentation of histological images. Numerous applications in other experimental/clinical areas requiring rapid, nearly real-time, quantitative assessment of tissue structure can be foreseen

    Nonlinear Elasticity Assessment with Optical Coherence Elastography for High-Selectivity Differentiation of Breast Cancer Tissues

    No full text
    Soft biological tissues, breast cancer tissues in particular, often manifest pronounced nonlinear elasticity, i.e., strong dependence of their Young&rsquo;s modulus on the applied stress. We showed that compression optical coherence elastography (C-OCE) is a promising tool enabling the evaluation of nonlinear properties in addition to the conventionally discussed Young&rsquo;s modulus in order to improve diagnostic accuracy of elastographic examination of tumorous tissues. The aim of this study was to reveal and quantify variations in stiffness for various breast tissue components depending on the applied pressure. We discussed nonlinear elastic properties of different breast cancer samples excised from 50 patients during breast-conserving surgery. Significant differences were found among various subtypes of tumorous and nontumorous breast tissues in terms of the initial Young&rsquo;s modulus (estimated for stress &lt; 1 kPa) and the nonlinearity parameter determining the rate of stiffness increase with increasing stress. However, Young&rsquo;s modulus alone or the nonlinearity parameter alone may be insufficient to differentiate some malignant breast tissue subtypes from benign. For instance, benign fibrous stroma and fibrous stroma with isolated individual cancer cells or small agglomerates of cancer cells do not yet exhibit significant difference in the Young&rsquo;s modulus. Nevertheless, they can be clearly singled out by their nonlinearity parameter, which is the main novelty of the proposed OCE-based discrimination of various breast tissue subtypes. This ability of OCE is very important for finding a clean resection boundary. Overall, morphological segmentation of OCE images accounting for both linear and nonlinear elastic parameters strongly enhances the correspondence with the histological slices and radically improves the diagnostic possibilities of C-OCE for a reliable clinical outcome

    Diagnostic Accuracy of Cross-Polarization OCT and OCT-Elastography for Differentiation of Breast Cancer Subtypes: Comparative Study

    No full text
    The possibility to assess molecular-biological and morphological features of particular breast cancer types can improve the precision of resection margin detection and enable accurate determining of the tumor aggressiveness, which is important for treatment selection. To enable reliable differentiation of breast-cancer subtypes and evaluation of resection margin, without performing conventional histological procedures, here we apply cross-polarization optical coherence tomography (CP-OCT) and compare it with a novel variant of compressional optical coherence elastography (C-OCE) in terms of the diagnostic accuracy (Ac) with histological verification. The study used 70 excised breast cancer specimens with different morphological structure and molecular status (Luminal A, Luminal B, Her2/Neo+, non-luminal and triple-negative cancer). Our first aim was to formulate convenient criteria of visual assessment of CP-OCT and C-OCE images intended (i) to differentiate tumorous and non-tumorous tissues and (ii) to enable more precise differentiation among different malignant states. We identified such criteria based on the presence of heterogeneities and characteristics of signal attenuation in CP-OCT images, as well as the presence of inclusions/mosaic structures combined with visually feasible assessment of several stiffness grades in C-OCE images. Secondly, we performed a blinded reader study of the Ac of C-OCE versus CP-OCT, for delineation of tumorous versus non-tumorous tissues followed by identification of breast cancer subtypes. For tumor detection, C-OCE showed higher specificity than CP-OCT (97.5% versus 93.3%) and higher Ac (96.0 versus 92.4%). For the first time, the Ac of C-OCE and CP-OCT were evaluated for differentiation between non-invasive and invasive breast cancer (90.4% and 82.5%, respectively). Furthermore, for invasive cancers, the difference between invasive but low-aggressive and highly-aggressive subtypes can be detected. For differentiation between non-tumorous tissue and low-aggressive breast-cancer subtypes, Ac was 95.7% for C-OCE and 88.1% for CP-OCT. For differentiation between non-tumorous tissue and highly-aggressive breast cancers, Ac was found to be 98.3% for C-OCE and 97.2% for CP-OCT. In all cases C-OCE showed better diagnostic parameters independently of the tumor type. These findings confirm the high potential of OCT-based examinations for rapid and accurate diagnostics during breast conservation surgery
    corecore