5 research outputs found

    Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records

    Get PDF
    Sudden global warming during the Paleocene–Eocene Thermal Maximum (PETM, 55.9 Ma) occurred because of the rapid release of several thousand gigatonnes of isotopically light carbon into the oceans and atmosphere; however, the cause of this release is not well understood. Some studies have linked carbon injection to volcanic activity associated with the North Atlantic Igneous Province (NAIP), while others have emphasised carbon cycle feedbacks associated with orbital forcing. This study presents the osmium isotope compositions of mudrocks that were deposited during the PETM at four locations (one from the Arctic Ocean, and three from the Peri-Tethys). The Os-isotope records all exhibit a shift of similar magnitude towards relatively radiogenic values across the PETM. This observation confirms that there was a transient, global increase in the flux of radiogenic Os from the weathering of continental rocks in response to elevated temperatures at that time. The tectonic effects of NAIP volcanic emplacement near the onset of the PETM is recorded by anomalously radiogenic Os-isotope compositions of PETM-age Arctic Ocean samples, which indicate an interval of hydrographic restriction that can be linked tectonic uplift due to hotspot volcanism in the North Atlantic seaway. The Peri-Tethys data also document a transient, higher flux of unradiogenic osmium into the ocean near the beginning of the PETM, most likely from the weathering of young mafic rocks associated with the NAIP. These observations support the hypothesis that volcanism played a major role in triggering the cascade of environmental changes during the PETM, and highlight the influence of paleogeography on the Os isotope characteristics of marine water masses

    Integrated stratigraphy of the Upper Barremian–Aptian sediments from the south-eastern Crimea

    Full text link
    Previous studies made in different parts of the world have shown that Barremian–Aptian times imply many difficulties in deciphering the biostratigraphy, microfossil evolution and correlation of bioevents. In an attempt to improve our knowledge of this period in a particular area of the Tethyan realm, we present the first integrated study of microbiota (including planktonic foraminifera, calcareous nannofossils, ostracods and palynomorphs) and magnetostratigraphy of the upper Barremian–Aptian sediments from south-eastern Crimea. The nannofossils display the classical Tethyan chain of bioevents in this interval, while the planktonic foraminifera demonstrate an incomplete succession of stratigraphically important taxa. Our study enabled the recognition of a series of biostratigraphic units by means of four groups of microfossils correlated to polarity chrons. The detailed analysis of the microfossil distribution led to a biostratigraphic characterization of the Barremian/Aptian transition and brought to light an interval, which may correspond to the OAE1a

    Institute of the Lithosphere of Marginal Seas, Russian Academy of Sciences, Staromonetny per

    Full text link
    Abstract The Lesnaya Group is part of a thick, poorly dated turbidite assemblage that sits in the footwall of a regionally extensive collision zone in which the Cretaceous-Paleocene Olutorsky island arc terrane was obducted onto continental margin basin strata. Nannoplankton from 18 samples from the upper part of the Lesnaya Group yield Paleocene through Middle Eocene assemblages. Detrital zircons from nine sandstone samples have a young population of fission-track ages that range from 43.7 ± 3.4 to 55.5 ± 3.5 Ma (uppermost Paleocene to Middle Eocene). The deformed footwall rocks of the Lesnaya Group and the overlying thrusts of the Olutorsky arc terrane, are unconformably overlain by neoautochthonous deposits which are Lutetian (lower Middle Eocene) and younger. Together, these new data indicate that thrusting, which is inferred to have been driven by collision of the Cretaceous-Paleocene island arc with north-eastern Asia, took place in the mid-Lutetian, at about 45 Ma
    corecore