2 research outputs found
Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study
Pt/C and Pt/x-SnO2/C catalysts (where x is mass content of SnO2) were synthesized using a polyol method. Their kinetic properties towards oxygen reduction reaction were studied by a rotating disk electrode (RDE) technique in a temperature range from 1 to 50 °C. The SnO2 content of catalyst samples was 5 and 10 wt.%. A quick evaluation of the catalyst activity, electrochemical behavior and average number of transferred electrons were performed using the RDE technique. It has been shown that the use of x-SnO2 (through modification of the carbon support) in a binary system together with Pt does not reduce the catalyst activity in the temperature range of 1–30 °C. The temperature rising up to 50 °C resulted in composite catalyst activity reduction at about 30%
Influence of Synthesis Conditions on the Crystal, Local Atomic, Electronic Structure, and Catalytic Properties of (Pr<sub>1−<i>x</i></sub>Yb<sub><i>x</i></sub>)<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (0 ≤ <i>x</i> ≤ 1) Powders
The influence of Yb3+ cations substitution for Pr3+ on the structure and catalytic activity of (Pr1−xYbx)2Zr2O7 powders synthesized via coprecipitation followed by calcination is studied using a combination of long- (s-XRD), medium- (Raman, FT-IR, and SEM-EDS) and short-range (XAFS) sensitive methods, as well as adsorption and catalytic techniques. It is established that chemical composition and calcination temperature are the two major factors that govern the phase composition, crystallographic, and local-structure parameters of these polycrystalline materials. The crystallographic and local-structure parameters of (Pr1−xYbx)2Zr2O7 samples prepared at 1400 °C/3 h demonstrate a tight correlation with their catalytic activity towards propane cracking. The progressive replacement of Pr3+ with Yb3+ cations gives rise to an increase in the catalytic activity. A mechanism of the catalytic cracking of propane is proposed, which considers the geometrical match between the metal–oxygen (Pr–O, Yb–O, and Zr–O) bond lengths within the active sites and the size of adsorbed propane molecule to be the decisive factor governing the reaction route