35 research outputs found

    Exploring the potential of phone call data to characterize the relationship between social network and travel behavior

    Full text link
    [EN] Social network contacts have significant influence on individual travel behavior. However, transport models rarely consider social interaction. One of the reasons is the difficulty to properly model social influence based on the limited data available. Non-conventional, passively collected data sources, such as Twitter, Facebook or mobile phones, provide large amounts of data containing both social interaction and spatiotemporal information. The analysis of such data opens an opportunity to better understand the influence of social networks on travel behavior. The main objective of this paper is to examine the relationship between travel behavior and social networks using mobile phone data. A huge dataset containing billions of registers has been used for this study. The paper analyzes the nature of co-location events and frequent locations shared by social network contacts, aiming not only to provide understanding on why users share certain locations, but also to quantify the degree in which the different types of locations are shared. Locations have been classified as frequent (home, work and other) and non-frequent. A novel approach to identify co-location events based on the intersection of users' mobility models has been proposed. Results show that other locations different from home and work are frequently associated to social interaction. Additionally, the importance of non-frequent locations in co-location events is shown. Finally, the potential application of the data analysis results to improve activity-based transport models and assess transport policies is discussed.The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no 318367 (EUNOIA project) and no 611307 (INSIGHT project). The work of ML has been funded under the PD/004/2013 project, from the Conselleria de Educacion, Cultura y Universidades of the Government of the Balearic Islands and from the European Social Fund through the Balearic Islands ESF operational program for 2013-2017.Picornell Tronch, M.; Ruiz Sánchez, T.; Lenormand, M.; Ramasco, JJ.; Dubernet, T.; Frías-Martínez, E. (2015). Exploring the potential of phone call data to characterize the relationship between social network and travel behavior. Transportation. 42(4):647-668. https://doi.org/10.1007/s11116-015-9594-1S647668424Ahas, R., Aasa, A., Silm, S., Tiru, M.: Daily rhythms of suburban commuters’ movements in the tallinn metropolitan area: case study with mobile positioning data. Transp. Res. Part C 18, 45–54 (2010)Arentze, T.,Timmermans, H. J.: social networks, social interactions and activity-travel behavior: a framework for micro-simulation. Paper presented at the 85th annual meeting of the Transportation Research Board, Washington, D. C., Jan 2006 (2006)Arentze, T., Timmermans, H.: Social networks, social interactions, and activity-travel behavior: a framework for microsimulation. Environ. Plan. 35, 1012–1027 (2008)Axhausen, K.W.: Social networks and travel: some hypotheses. In: Donaghy, K.P., Poppelreuter, S., Rudinger, G. (eds.) Social Aspects of Sustainable Transport: Transatlantic Perspectives, pp. 90–108. Ashgate, Aldershot (2005)Bagrow, J.P., Lin, Y.-R.: Mesoscopic structure and social aspects of human mobility. PLoS One 7(5), 1–11 (2012)Bar-Gera, H.: Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from israel. Transp. Res. Part C 15(2007), 380–391 (2007)Becker, R.A., Cáceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: A tale of one city: using cellular network data for urban planning. Pervasive Comput. IEEE 10(4), 18–26 (2011)Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin–destination data from a mobile phone network. IET Intell. Transp. Syst. 1(1), 5–26 (2007)Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular networks. IET Intell. Transp. Syst. 2(3), 179–192 (2008)Caceres, N., Romero, L.M., Benitez, F.G., Castillo, J.M.D.: Traffic flow estimation models using cellular phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)Calabrese, F., Pereira, F. C., Lorenzo, G. D., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computing (2010)Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecommunications and face-to-face interactions: a study using mobile phone data. PLoS One 6(7), e20814 (2011a). doi: 10.1371/journal.pone.0020814Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. Pervasive Comput. IEEE 10(4), 36–44 (2011b)Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: social networks approach. Transportation 33, 463–480 (2006)Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.J.: Collecting social network data to study social activity-travel behaviour: an egocentric approach. Environ. Plan. B 35(6), 961–980 (2008a)Carrasco, J.A., Hogan B., Wellman B., Miller E. J.: Agency in social activity and ICT interactions: The role of social networks in time and space, Tijdschrift voor Economische en Sociale Geografie (J. Eco. Soc. Geogr.), 99(5), 562–583 (2008b)Carrasco, J.A., Miller, E.J., Wellman, B.: How far and with whom do people socialize? Empirical evidence about the distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008b)Carrasco, J.A., Miller, E.J.: The social dimension in action: a multilevel, personal networks model of social activity frequency. Transp. Res. Part A 43(1), 90–104 (2009)Chen, C., Mei, Y.: Does distance still matter in facilitating social ties? The roles of mobility patterns and the built environment. Presented at 93rd TRB annual meeting (2014)Cho E., Myers S.A., Leskovek J.: Friendship and mobility: user movement in location-based social networks. In: KDD ‘11 Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1082–1090 (2011)Clifton, K.J.: The social context of travel behavior. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 441–448. Emerald Press, London (2013)Do T., Gatica-Perez D.: Contextual conditional models for smartphone-based human mobility prediction. In: Proceedings ACM International Conference on Ubiquitous Computing, Pittsburgh, Sept (2012)Doyle, J., Hung, P., Kelly, D., Mcloone, S., Farrell, R.: Utilising mobile phone billing records for travel mode discovery. ISSC 2011, Trinity College Dublin, June (2011)Dubernet, T., Axhausen K. W.: Solution concepts for the simulation of household-level joint descision making in multi-agent travel simulation tools, paper presented at the 14th Swiss Transport Research Conference (STRC), Ascona (2014)Dugundji, E., Walker, J.: Discrete choice with social and spatial network interdependencies: an empirical example using mixed GEV models with field and “panel” effects. Transp. Res. Rec. 1921, 70–78 (2005)Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(2008), 779–782 (2008)Gould, J.: Cell phone enabled travel surveys: the medium moves the message. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 51–70. Emerald Press, Bingley (2013)Habib, K.N., Carrasco, J.A.: Investigating the role of social networks in start time and duration of activities: a trivariate simultaneous econometric model. Transportation Research Record: Journal of the Transportation Research Board 2230, 1–8 (2011)Hackney, Jeremy K., Kay W. Axhausen: An agent model of social network and travel behavior interdependence. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Hackney, J., Marchal, F.: A model for coupling multi-agent social interactions and traffic simulation, in: TRB 2009 annual meeting (2009)Hackney, J., Marchal, F.: A coupled multi-agent microsimulation of social interactions and transportation behavior. Transp. Res. Part A 45, 296–309 (2011)Horni, A.: Destination choice modeling of discretionary activities in transport microsimulations, Ph.D. Thesis, ETH Zurich, Zurich (2013)Isaacman, S.,Becker, R., Caceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in people’s lives from cellular network data. In: Procedings International Conference on Pervasive Computing, San Francisco, June (2011)Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational Social Science. Science 323, 721 (2009)Ma, H., Ronald, N., Arentze, T.A., Timmermans, H.J.P.: New credit mechanism for semicooperative agent-mediated joint activity-travel scheduling. Transp. Res. Rec. 2230, 104–110 (2011)Ma, H., Arentze, T. A., Timmermans, H. J. P.: Incorporating selfishness and altruism into dynamic joint activity-travel scheduling. Paper presented at the 13th international conference on Travel Behaviour Research (IATBR), Toronto, July (2012)Marchal, F., Nagel, K.: Allowed cooperative agents in a microsimulation to share information with each other about activity locations and about other agents, in order to optimize trip chains (2006)Molin, E.J.E., Arentze, T.A., Timmermans, H.J.P.: Social activities and travel demands : a model-based analysis of social-network data. Transp. Res. Rec. 2082, 168–175 (2007)Moore, J., Carrasco, J.A., Tudela, A.: Exploring the links between personal networks, time use, and the spatial distribution of social contacts. Transportation 40(4), 773–788 (2013)Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)Páez, A., Scott, D.M.: Social influence on travel behavior: a simulation example of the decision to telecommute. Environ. Plan. A 39(3), 647–665 (2007)Phithakkitnukoon, S., Calabrese, F., Smoreda, Z., Ratti, C.: Out of sight out of mind: how our mobile social network changes during migration. Proceedings of the IEEE International Conference on Social Computing, pp. 515–520. Cambridge University Press, Cambridge (2011)Phithakkitnukoon, S., Smoreda, Z., Olivier, P.: Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One 7(6), e39253 (2012). doi: 10.1371/journal.pone.0039253Ronald, N.A., Arentze, T.A., Timmermans, H.J.P.: Modeling social interactions between individuals for joint activity scheduling. Transp. Res. Part B 46, 276–290 (2012a)Ronald, N.A., Dignum, V., Jonker, C., Arentze, T.A., Timmermans, H.J.P.: On the engineering of agent-based simulations of social activities with social networks. Inf. Softw. Technol. 54(6), 625–638 (2012b)Rose, G.: Mobile phones as traffic probes: practices, prospects and issues. Transp. Rev. 26(3), 275–291 (2006)Sharmeen, F., Arentze, T., Timmermans, H.: A multilevel path analysis of social network dynamics and the mutual interdependencies between face-to-face and ICT modes of social interaction in the context of life-cycle events. In: Roorda, M.J., Miller, E.J. (eds.) Travel Behaviour Research: Current Foundations, Future Prospects, pp. 411–432. Lulu Press, Toronto (2013)Sharmeen, F., Arentze, T.A., Timmermans, H.J.P.: Dynamics of face-to-face social interaction frequency: role of accessibility, urbanization, changes in geographical distance and path dependence. J. Transp. Geogr. 34, 211–220 (2014)Silm, S., Ahas, R.: The seasonal variability of population in estonian municipalities. Environ. Plan. A 42, 2527–2546 (2010)Silvis, J., Niemeier, D., D’Souza, R.: Social networks and travel behavior: report from an integrated travel diary. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Sobolevsky, S., Szell, M., Campari, R., Couronné, T., Smoreda, Z., et al.: Delineating geographical regions with networks of human interactions in an extensive set of countries. PLoS One 8(12), e81707 (2013)Sohn, K., Kim, D.: Dynamic origin–destination flow estimation using cellular communication system. IEEE Trans. Veh. Technol. 57(5), 2703–2713 (2008)Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(2010), 818–823 (2010a)Song, C., Qu, Z., Blumm, N., Barabási, L.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010b)Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from gsm networks for traffic parameter and urban spatial pattern assessment: A review of applications and opportunities. GeoJournal 78, 223–243 (2011). doi: 10.1007/s10708-011-9413-yVan den Berg, P., Arentze, T., Timmermans, H.J.P.: A path analysis of social networks, telecommunication and social activity–travel patterns. Transp. Res. Part C 26(2013), 256–268 (2013)Wang, H., Calabrese, F., Lorenzo, G. D., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th international IEEE annual conference on intelligent transportation systems, 318–323 (2010)White, J. and Wells, I.: Extracting origin destination information from mobile phone data. Road transport information and Control, 19–21 Mar (2002)Yim, Y.: The state of cellular probes. California PATH Working Paper, UCB-ITS-PRR-2003-25 (2003)Ythier, J., Walker, J.L., Bierlaire, M.: The influence of social contacts and communication use on travel behavior: a smartphone-based study. In: Transportation Research Board annual meeting (2013

    A Three-Stage Colonization Model for the Peopling of the Americas

    Get PDF
    Background: We evaluate the process by which the Americas were originally colonized and propose a three-stage model that integrates current genetic, archaeological, geological, and paleoecological data. Specifically, we analyze mitochondrial and nuclear genetic data by using complementary coalescent models of demographic history and incorporating nongenetic data to enhance the anthropological relevance of the analysis. Methodology/Findings: Bayesian skyline plots, which provide dynamic representations of population size changes over time, indicate that Amerinds went through two stages of growth <40,000 and <15,000 years ago separated by a long period of population stability. Isolation-with-migration coalescent analyses, which utilize data from sister populations to estimate a divergence date and founder population sizes, suggest an Amerind population expansion starting <15,000 years ago. Conclusions/Significance: These results support a model for the peopling of the New World in which Amerind ancestors diverged from the Asian gene pool prior to 40,000 years ago and experienced a gradual population expansion as they moved into Beringia. After a long period of little change in population size in greater Beringia, Amerinds rapidly expanded into the Americas <15,000 years ago either through an interior ice-free corridor or along the coast. This rapid colonization of the New World was achieved by a founder group with an effective population size of <1,000–5,400 individuals. Our model presents a detailed scenario for the timing and scale of the initial migration to the Americas, substantially refines th

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Information Age and Knowledge Society: Implication for Libraries

    Get PDF
    The paper highlighted the concepts of information age and knowledge society and their implication for libraries. Basic concepts such as information and knowledge society were defined. A brief historical role of information and knowledge from the pre-historic period to modern concepts or information and knowledge society were examined. The role of libraries as facilitators to information age and knowledge society were also highlighted in the context of information and communication technology (ICT) in the present-day society, the arising need for ICT competencies was advocated. The paper concluded by making some recommendations like developing a workable ICT adequate and functional ICT facilities and services are required, developing a workable ICT policy to regulate library operation and services, regular training and retraining of library staff to equip them with skill and experiences to function maximally

    2348Novel direct thrombin inhibitor achieves superior antithrombotic effect with lower bleeding risk than heparin or bivalirudin

    No full text
    10.1093/eurheartj/ehz748.0135European Heart Journal40Supplement_
    corecore